Evaluate
\frac{115}{3}\approx 38.333333333
Factor
\frac{5 \cdot 23}{3} = 38\frac{1}{3} = 38.333333333333336
Share
Copied to clipboard
6-\frac{96-\left(118-21\right)}{3}+\frac{864}{16+\frac{132}{12}}
Multiply 16 and 6 to get 96.
6-\frac{96-97}{3}+\frac{864}{16+\frac{132}{12}}
Subtract 21 from 118 to get 97.
6-\frac{-1}{3}+\frac{864}{16+\frac{132}{12}}
Subtract 97 from 96 to get -1.
6-\left(-\frac{1}{3}\right)+\frac{864}{16+\frac{132}{12}}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
6+\frac{1}{3}+\frac{864}{16+\frac{132}{12}}
The opposite of -\frac{1}{3} is \frac{1}{3}.
\frac{18}{3}+\frac{1}{3}+\frac{864}{16+\frac{132}{12}}
Convert 6 to fraction \frac{18}{3}.
\frac{18+1}{3}+\frac{864}{16+\frac{132}{12}}
Since \frac{18}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{19}{3}+\frac{864}{16+\frac{132}{12}}
Add 18 and 1 to get 19.
\frac{19}{3}+\frac{864}{16+11}
Divide 132 by 12 to get 11.
\frac{19}{3}+\frac{864}{27}
Add 16 and 11 to get 27.
\frac{19}{3}+32
Divide 864 by 27 to get 32.
\frac{19}{3}+\frac{96}{3}
Convert 32 to fraction \frac{96}{3}.
\frac{19+96}{3}
Since \frac{19}{3} and \frac{96}{3} have the same denominator, add them by adding their numerators.
\frac{115}{3}
Add 19 and 96 to get 115.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}