Solve for x
x=\frac{6y}{6-y}
y\neq 6
Solve for y
y=\frac{6x}{x+6}
x\neq -6
Graph
Share
Copied to clipboard
6x-6y=xy
Use the distributive property to multiply 6 by x-y.
6x-6y-xy=0
Subtract xy from both sides.
6x-xy=6y
Add 6y to both sides. Anything plus zero gives itself.
\left(6-y\right)x=6y
Combine all terms containing x.
\frac{\left(6-y\right)x}{6-y}=\frac{6y}{6-y}
Divide both sides by -y+6.
x=\frac{6y}{6-y}
Dividing by -y+6 undoes the multiplication by -y+6.
6x-6y=xy
Use the distributive property to multiply 6 by x-y.
6x-6y-xy=0
Subtract xy from both sides.
-6y-xy=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
\left(-6-x\right)y=-6x
Combine all terms containing y.
\left(-x-6\right)y=-6x
The equation is in standard form.
\frac{\left(-x-6\right)y}{-x-6}=-\frac{6x}{-x-6}
Divide both sides by -6-x.
y=-\frac{6x}{-x-6}
Dividing by -6-x undoes the multiplication by -6-x.
y=\frac{6x}{x+6}
Divide -6x by -6-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}