Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
18\left(4+\frac{x-2}{3}\right)-45=0
Multiply both sides of the equation by 3.
72+18\times \frac{x-2}{3}-45=0
Use the distributive property to multiply 18 by 4+\frac{x-2}{3}.
72+6\left(x-2\right)-45=0
Cancel out 3, the greatest common factor in 18 and 3.
72+6x-12-45=0
Use the distributive property to multiply 6 by x-2.
60+6x-45=0
Subtract 12 from 72 to get 60.
15+6x=0
Subtract 45 from 60 to get 15.
6x=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-15}{6}
Divide both sides by 6.
x=-\frac{5}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}