Solve for t
t = -\frac{35}{3} = -11\frac{2}{3} \approx -11.666666667
Share
Copied to clipboard
18t+42=2\left(6t-10\right)-8
Use the distributive property to multiply 6 by 3t+7.
18t+42=12t-20-8
Use the distributive property to multiply 2 by 6t-10.
18t+42=12t-28
Subtract 8 from -20 to get -28.
18t+42-12t=-28
Subtract 12t from both sides.
6t+42=-28
Combine 18t and -12t to get 6t.
6t=-28-42
Subtract 42 from both sides.
6t=-70
Subtract 42 from -28 to get -70.
t=\frac{-70}{6}
Divide both sides by 6.
t=-\frac{35}{3}
Reduce the fraction \frac{-70}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}