Solve for a
a = \frac{2 \sqrt{106} + 10}{3} \approx 10.197086761
a=\frac{10-2\sqrt{106}}{3}\approx -3.530420094
Share
Copied to clipboard
-\frac{18}{a}+\frac{a}{2}=\frac{20}{6}
Divide both sides by 6.
-\frac{18}{a}+\frac{a}{2}=\frac{10}{3}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
-6\times 18+3aa=20a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of a,2,3.
-108+3aa=20a
Multiply -6 and 18 to get -108.
-108+3a^{2}=20a
Multiply a and a to get a^{2}.
-108+3a^{2}-20a=0
Subtract 20a from both sides.
3a^{2}-20a-108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\left(-108\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-20\right)±\sqrt{400-4\times 3\left(-108\right)}}{2\times 3}
Square -20.
a=\frac{-\left(-20\right)±\sqrt{400-12\left(-108\right)}}{2\times 3}
Multiply -4 times 3.
a=\frac{-\left(-20\right)±\sqrt{400+1296}}{2\times 3}
Multiply -12 times -108.
a=\frac{-\left(-20\right)±\sqrt{1696}}{2\times 3}
Add 400 to 1296.
a=\frac{-\left(-20\right)±4\sqrt{106}}{2\times 3}
Take the square root of 1696.
a=\frac{20±4\sqrt{106}}{2\times 3}
The opposite of -20 is 20.
a=\frac{20±4\sqrt{106}}{6}
Multiply 2 times 3.
a=\frac{4\sqrt{106}+20}{6}
Now solve the equation a=\frac{20±4\sqrt{106}}{6} when ± is plus. Add 20 to 4\sqrt{106}.
a=\frac{2\sqrt{106}+10}{3}
Divide 20+4\sqrt{106} by 6.
a=\frac{20-4\sqrt{106}}{6}
Now solve the equation a=\frac{20±4\sqrt{106}}{6} when ± is minus. Subtract 4\sqrt{106} from 20.
a=\frac{10-2\sqrt{106}}{3}
Divide 20-4\sqrt{106} by 6.
a=\frac{2\sqrt{106}+10}{3} a=\frac{10-2\sqrt{106}}{3}
The equation is now solved.
-\frac{18}{a}+\frac{a}{2}=\frac{20}{6}
Divide both sides by 6.
-\frac{18}{a}+\frac{a}{2}=\frac{10}{3}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
-6\times 18+3aa=20a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6a, the least common multiple of a,2,3.
-108+3aa=20a
Multiply -6 and 18 to get -108.
-108+3a^{2}=20a
Multiply a and a to get a^{2}.
-108+3a^{2}-20a=0
Subtract 20a from both sides.
3a^{2}-20a=108
Add 108 to both sides. Anything plus zero gives itself.
\frac{3a^{2}-20a}{3}=\frac{108}{3}
Divide both sides by 3.
a^{2}-\frac{20}{3}a=\frac{108}{3}
Dividing by 3 undoes the multiplication by 3.
a^{2}-\frac{20}{3}a=36
Divide 108 by 3.
a^{2}-\frac{20}{3}a+\left(-\frac{10}{3}\right)^{2}=36+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{20}{3}a+\frac{100}{9}=36+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{20}{3}a+\frac{100}{9}=\frac{424}{9}
Add 36 to \frac{100}{9}.
\left(a-\frac{10}{3}\right)^{2}=\frac{424}{9}
Factor a^{2}-\frac{20}{3}a+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{10}{3}\right)^{2}}=\sqrt{\frac{424}{9}}
Take the square root of both sides of the equation.
a-\frac{10}{3}=\frac{2\sqrt{106}}{3} a-\frac{10}{3}=-\frac{2\sqrt{106}}{3}
Simplify.
a=\frac{2\sqrt{106}+10}{3} a=\frac{10-2\sqrt{106}}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}