Solve for x
x = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Graph
Share
Copied to clipboard
\frac{5}{6}x+\frac{2}{3}=\frac{-9}{6}
Divide both sides by 6.
\frac{5}{6}x+\frac{2}{3}=-\frac{3}{2}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.
\frac{5}{6}x=-\frac{3}{2}-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
\frac{5}{6}x=-\frac{9}{6}-\frac{4}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{5}{6}x=\frac{-9-4}{6}
Since -\frac{9}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}x=-\frac{13}{6}
Subtract 4 from -9 to get -13.
x=-\frac{13}{6}\times \frac{6}{5}
Multiply both sides by \frac{6}{5}, the reciprocal of \frac{5}{6}.
x=\frac{-13\times 6}{6\times 5}
Multiply -\frac{13}{6} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-13}{5}
Cancel out 6 in both numerator and denominator.
x=-\frac{13}{5}
Fraction \frac{-13}{5} can be rewritten as -\frac{13}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}