Solve for x
x = \frac{\sqrt{41} - 1}{4} \approx 1.350781059
x=\frac{-\sqrt{41}-1}{4}\approx -1.850781059
x=1
x=-2
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
±\frac{10}{3},±\frac{20}{3},±10,±20,±\frac{5}{3},±5,±\frac{5}{6},±\frac{5}{2},±\frac{2}{3},±\frac{4}{3},±2,±4,±\frac{1}{3},±1,±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 20 and q divides the leading coefficient 6. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6x^{4}+19x^{3}+x^{2}-36x-20=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 6x^{5}+13x^{4}-18x^{3}-37x^{2}+16x+20 by x-1 to get 6x^{4}+19x^{3}+x^{2}-36x-20. Solve the equation where the result equals to 0.
±\frac{10}{3},±\frac{20}{3},±10,±20,±\frac{5}{3},±5,±\frac{5}{6},±\frac{5}{2},±\frac{2}{3},±\frac{4}{3},±2,±4,±\frac{1}{3},±1,±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -20 and q divides the leading coefficient 6. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6x^{3}+7x^{2}-13x-10=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 6x^{4}+19x^{3}+x^{2}-36x-20 by x+2 to get 6x^{3}+7x^{2}-13x-10. Solve the equation where the result equals to 0.
±\frac{5}{3},±\frac{10}{3},±5,±10,±\frac{5}{6},±\frac{5}{2},±\frac{1}{3},±\frac{2}{3},±1,±2,±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -10 and q divides the leading coefficient 6. List all candidates \frac{p}{q}.
x=-\frac{2}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}+x-5=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 6x^{3}+7x^{2}-13x-10 by 3\left(x+\frac{2}{3}\right)=3x+2 to get 2x^{2}+x-5. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 1 for b, and -5 for c in the quadratic formula.
x=\frac{-1±\sqrt{41}}{4}
Do the calculations.
x=\frac{-\sqrt{41}-1}{4} x=\frac{\sqrt{41}-1}{4}
Solve the equation 2x^{2}+x-5=0 when ± is plus and when ± is minus.
x=1 x=-2 x=-\frac{2}{3} x=\frac{-\sqrt{41}-1}{4} x=\frac{\sqrt{41}-1}{4}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}