Factor
\left(3x-4\right)\left(2x+5\right)
Evaluate
\left(3x-4\right)\left(2x+5\right)
Graph
Share
Copied to clipboard
6x^{2}+7x-20
Multiply and combine like terms.
a+b=7 ab=6\left(-20\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=-8 b=15
The solution is the pair that gives sum 7.
\left(6x^{2}-8x\right)+\left(15x-20\right)
Rewrite 6x^{2}+7x-20 as \left(6x^{2}-8x\right)+\left(15x-20\right).
2x\left(3x-4\right)+5\left(3x-4\right)
Factor out 2x in the first and 5 in the second group.
\left(3x-4\right)\left(2x+5\right)
Factor out common term 3x-4 by using distributive property.
6x^{2}+7x-20
Combine -8x and 15x to get 7x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}