Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x^{2}-x-2\right)
Factor out 6.
a+b=-1 ab=1\left(-2\right)=-2
Consider x^{2}-x-2. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(x-2\right)
Rewrite x^{2}-x-2 as \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Factor out x in x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Factor out common term x-2 by using distributive property.
6\left(x-2\right)\left(x+1\right)
Rewrite the complete factored expression.
6x^{2}-6x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6\left(-12\right)}}{2\times 6}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-6\right)±\sqrt{36+288}}{2\times 6}
Multiply -24 times -12.
x=\frac{-\left(-6\right)±\sqrt{324}}{2\times 6}
Add 36 to 288.
x=\frac{-\left(-6\right)±18}{2\times 6}
Take the square root of 324.
x=\frac{6±18}{2\times 6}
The opposite of -6 is 6.
x=\frac{6±18}{12}
Multiply 2 times 6.
x=\frac{24}{12}
Now solve the equation x=\frac{6±18}{12} when ± is plus. Add 6 to 18.
x=2
Divide 24 by 12.
x=-\frac{12}{12}
Now solve the equation x=\frac{6±18}{12} when ± is minus. Subtract 18 from 6.
x=-1
Divide -12 by 12.
6x^{2}-6x-12=6\left(x-2\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -1 for x_{2}.
6x^{2}-6x-12=6\left(x-2\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.