6 { x }^{ 2 } -2x-4==
Factor
2\left(x-1\right)\left(3x+2\right)
Evaluate
2\left(x-1\right)\left(3x+2\right)
Graph
Share
Copied to clipboard
2\left(3x^{2}-x-2\right)
Factor out 2.
a+b=-1 ab=3\left(-2\right)=-6
Consider 3x^{2}-x-2. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-3 b=2
The solution is the pair that gives sum -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
Rewrite 3x^{2}-x-2 as \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
Factor out 3x in the first and 2 in the second group.
\left(x-1\right)\left(3x+2\right)
Factor out common term x-1 by using distributive property.
2\left(x-1\right)\left(3x+2\right)
Rewrite the complete factored expression.
6x^{2}-2x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
Multiply -24 times -4.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
Add 4 to 96.
x=\frac{-\left(-2\right)±10}{2\times 6}
Take the square root of 100.
x=\frac{2±10}{2\times 6}
The opposite of -2 is 2.
x=\frac{2±10}{12}
Multiply 2 times 6.
x=\frac{12}{12}
Now solve the equation x=\frac{2±10}{12} when ± is plus. Add 2 to 10.
x=1
Divide 12 by 12.
x=-\frac{8}{12}
Now solve the equation x=\frac{2±10}{12} when ± is minus. Subtract 10 from 2.
x=-\frac{2}{3}
Reduce the fraction \frac{-8}{12} to lowest terms by extracting and canceling out 4.
6x^{2}-2x-4=6\left(x-1\right)\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{2}{3} for x_{2}.
6x^{2}-2x-4=6\left(x-1\right)\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-2x-4=6\left(x-1\right)\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-2x-4=2\left(x-1\right)\left(3x+2\right)
Cancel out 3, the greatest common factor in 6 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}