Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}=27
Add 27 to both sides. Anything plus zero gives itself.
x^{2}=\frac{27}{6}
Divide both sides by 6.
x^{2}=\frac{9}{2}
Reduce the fraction \frac{27}{6} to lowest terms by extracting and canceling out 3.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Take the square root of both sides of the equation.
6x^{2}-27=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-27\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-27\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-27\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{648}}{2\times 6}
Multiply -24 times -27.
x=\frac{0±18\sqrt{2}}{2\times 6}
Take the square root of 648.
x=\frac{0±18\sqrt{2}}{12}
Multiply 2 times 6.
x=\frac{3\sqrt{2}}{2}
Now solve the equation x=\frac{0±18\sqrt{2}}{12} when ± is plus.
x=-\frac{3\sqrt{2}}{2}
Now solve the equation x=\frac{0±18\sqrt{2}}{12} when ± is minus.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
The equation is now solved.