Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
a+b=-19 ab=6\times 15=90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Calculate the sum for each pair.
a=-10 b=-9
The solution is the pair that gives sum -19.
\left(6x^{2}-10x\right)+\left(-9x+15\right)
Rewrite 6x^{2}-19x+15 as \left(6x^{2}-10x\right)+\left(-9x+15\right).
2x\left(3x-5\right)-3\left(3x-5\right)
Factor out 2x in the first and -3 in the second group.
\left(3x-5\right)\left(2x-3\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=\frac{3}{2}
To find equation solutions, solve 3x-5=0 and 2x-3=0.
6x^{2}-19x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 6\times 15}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -19 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 6\times 15}}{2\times 6}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-24\times 15}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-19\right)±\sqrt{361-360}}{2\times 6}
Multiply -24 times 15.
x=\frac{-\left(-19\right)±\sqrt{1}}{2\times 6}
Add 361 to -360.
x=\frac{-\left(-19\right)±1}{2\times 6}
Take the square root of 1.
x=\frac{19±1}{2\times 6}
The opposite of -19 is 19.
x=\frac{19±1}{12}
Multiply 2 times 6.
x=\frac{20}{12}
Now solve the equation x=\frac{19±1}{12} when ± is plus. Add 19 to 1.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=\frac{18}{12}
Now solve the equation x=\frac{19±1}{12} when ± is minus. Subtract 1 from 19.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=\frac{5}{3} x=\frac{3}{2}
The equation is now solved.
6x^{2}-19x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}-19x+15-15=-15
Subtract 15 from both sides of the equation.
6x^{2}-19x=-15
Subtracting 15 from itself leaves 0.
\frac{6x^{2}-19x}{6}=-\frac{15}{6}
Divide both sides by 6.
x^{2}-\frac{19}{6}x=-\frac{15}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{19}{6}x=-\frac{5}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{19}{6}x+\left(-\frac{19}{12}\right)^{2}=-\frac{5}{2}+\left(-\frac{19}{12}\right)^{2}
Divide -\frac{19}{6}, the coefficient of the x term, by 2 to get -\frac{19}{12}. Then add the square of -\frac{19}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{6}x+\frac{361}{144}=-\frac{5}{2}+\frac{361}{144}
Square -\frac{19}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{6}x+\frac{361}{144}=\frac{1}{144}
Add -\frac{5}{2} to \frac{361}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{12}\right)^{2}=\frac{1}{144}
Factor x^{2}-\frac{19}{6}x+\frac{361}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
x-\frac{19}{12}=\frac{1}{12} x-\frac{19}{12}=-\frac{1}{12}
Simplify.
x=\frac{5}{3} x=\frac{3}{2}
Add \frac{19}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}