Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=6\left(-15\right)=-90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-9 b=10
The solution is the pair that gives sum 1.
\left(6x^{2}-9x\right)+\left(10x-15\right)
Rewrite 6x^{2}+x-15 as \left(6x^{2}-9x\right)+\left(10x-15\right).
3x\left(2x-3\right)+5\left(2x-3\right)
Factor out 3x in the first and 5 in the second group.
\left(2x-3\right)\left(3x+5\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=-\frac{5}{3}
To find equation solutions, solve 2x-3=0 and 3x+5=0.
6x^{2}+x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-15\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 1 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
Square 1.
x=\frac{-1±\sqrt{1-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-1±\sqrt{1+360}}{2\times 6}
Multiply -24 times -15.
x=\frac{-1±\sqrt{361}}{2\times 6}
Add 1 to 360.
x=\frac{-1±19}{2\times 6}
Take the square root of 361.
x=\frac{-1±19}{12}
Multiply 2 times 6.
x=\frac{18}{12}
Now solve the equation x=\frac{-1±19}{12} when ± is plus. Add -1 to 19.
x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{20}{12}
Now solve the equation x=\frac{-1±19}{12} when ± is minus. Subtract 19 from -1.
x=-\frac{5}{3}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=-\frac{5}{3}
The equation is now solved.
6x^{2}+x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
6x^{2}+x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
6x^{2}+x=15
Subtract -15 from 0.
\frac{6x^{2}+x}{6}=\frac{15}{6}
Divide both sides by 6.
x^{2}+\frac{1}{6}x=\frac{15}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{1}{6}x=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{5}{2}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{5}{2}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{361}{144}
Add \frac{5}{2} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{12}\right)^{2}=\frac{361}{144}
Factor x^{2}+\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
Take the square root of both sides of the equation.
x+\frac{1}{12}=\frac{19}{12} x+\frac{1}{12}=-\frac{19}{12}
Simplify.
x=\frac{3}{2} x=-\frac{5}{3}
Subtract \frac{1}{12} from both sides of the equation.