Solve for x
x = \frac{\sqrt{55} - 1}{2} \approx 3.208099244
x=\frac{-\sqrt{55}-1}{2}\approx -4.208099244
Graph
Share
Copied to clipboard
6x^{2}+6x+3^{2}=90
Combine 3x and 3x to get 6x.
6x^{2}+6x+9=90
Calculate 3 to the power of 2 and get 9.
6x^{2}+6x+9-90=0
Subtract 90 from both sides.
6x^{2}+6x-81=0
Subtract 90 from 9 to get -81.
x=\frac{-6±\sqrt{6^{2}-4\times 6\left(-81\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 6 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 6\left(-81\right)}}{2\times 6}
Square 6.
x=\frac{-6±\sqrt{36-24\left(-81\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-6±\sqrt{36+1944}}{2\times 6}
Multiply -24 times -81.
x=\frac{-6±\sqrt{1980}}{2\times 6}
Add 36 to 1944.
x=\frac{-6±6\sqrt{55}}{2\times 6}
Take the square root of 1980.
x=\frac{-6±6\sqrt{55}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{55}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{55}}{12} when ± is plus. Add -6 to 6\sqrt{55}.
x=\frac{\sqrt{55}-1}{2}
Divide -6+6\sqrt{55} by 12.
x=\frac{-6\sqrt{55}-6}{12}
Now solve the equation x=\frac{-6±6\sqrt{55}}{12} when ± is minus. Subtract 6\sqrt{55} from -6.
x=\frac{-\sqrt{55}-1}{2}
Divide -6-6\sqrt{55} by 12.
x=\frac{\sqrt{55}-1}{2} x=\frac{-\sqrt{55}-1}{2}
The equation is now solved.
6x^{2}+6x+3^{2}=90
Combine 3x and 3x to get 6x.
6x^{2}+6x+9=90
Calculate 3 to the power of 2 and get 9.
6x^{2}+6x=90-9
Subtract 9 from both sides.
6x^{2}+6x=81
Subtract 9 from 90 to get 81.
\frac{6x^{2}+6x}{6}=\frac{81}{6}
Divide both sides by 6.
x^{2}+\frac{6}{6}x=\frac{81}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+x=\frac{81}{6}
Divide 6 by 6.
x^{2}+x=\frac{27}{2}
Reduce the fraction \frac{81}{6} to lowest terms by extracting and canceling out 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{27}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{27}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{55}{4}
Add \frac{27}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{55}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{55}}{2} x+\frac{1}{2}=-\frac{\sqrt{55}}{2}
Simplify.
x=\frac{\sqrt{55}-1}{2} x=\frac{-\sqrt{55}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}