Solve for x
x=0.7
x=-2.7
Graph
Share
Copied to clipboard
6x^{2}+12x-11.34=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-11.34\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 12 for b, and -11.34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 6\left(-11.34\right)}}{2\times 6}
Square 12.
x=\frac{-12±\sqrt{144-24\left(-11.34\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-12±\sqrt{144+272.16}}{2\times 6}
Multiply -24 times -11.34.
x=\frac{-12±\sqrt{416.16}}{2\times 6}
Add 144 to 272.16.
x=\frac{-12±\frac{102}{5}}{2\times 6}
Take the square root of 416.16.
x=\frac{-12±\frac{102}{5}}{12}
Multiply 2 times 6.
x=\frac{\frac{42}{5}}{12}
Now solve the equation x=\frac{-12±\frac{102}{5}}{12} when ± is plus. Add -12 to \frac{102}{5}.
x=\frac{7}{10}
Divide \frac{42}{5} by 12.
x=-\frac{\frac{162}{5}}{12}
Now solve the equation x=\frac{-12±\frac{102}{5}}{12} when ± is minus. Subtract \frac{102}{5} from -12.
x=-\frac{27}{10}
Divide -\frac{162}{5} by 12.
x=\frac{7}{10} x=-\frac{27}{10}
The equation is now solved.
6x^{2}+12x-11.34=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+12x-11.34-\left(-11.34\right)=-\left(-11.34\right)
Add 11.34 to both sides of the equation.
6x^{2}+12x=-\left(-11.34\right)
Subtracting -11.34 from itself leaves 0.
6x^{2}+12x=11.34
Subtract -11.34 from 0.
\frac{6x^{2}+12x}{6}=\frac{11.34}{6}
Divide both sides by 6.
x^{2}+\frac{12}{6}x=\frac{11.34}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+2x=\frac{11.34}{6}
Divide 12 by 6.
x^{2}+2x=1.89
Divide 11.34 by 6.
x^{2}+2x+1^{2}=1.89+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1.89+1
Square 1.
x^{2}+2x+1=2.89
Add 1.89 to 1.
\left(x+1\right)^{2}=2.89
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2.89}
Take the square root of both sides of the equation.
x+1=\frac{17}{10} x+1=-\frac{17}{10}
Simplify.
x=\frac{7}{10} x=-\frac{27}{10}
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}