Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
a+b=11 ab=6\left(-35\right)=-210
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx-35. To find a and b, set up a system to be solved.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Calculate the sum for each pair.
a=-10 b=21
The solution is the pair that gives sum 11.
\left(6x^{2}-10x\right)+\left(21x-35\right)
Rewrite 6x^{2}+11x-35 as \left(6x^{2}-10x\right)+\left(21x-35\right).
2x\left(3x-5\right)+7\left(3x-5\right)
Factor out 2x in the first and 7 in the second group.
\left(3x-5\right)\left(2x+7\right)
Factor out common term 3x-5 by using distributive property.
x=\frac{5}{3} x=-\frac{7}{2}
To find equation solutions, solve 3x-5=0 and 2x+7=0.
6x^{2}+11x-35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-35\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 11 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 6\left(-35\right)}}{2\times 6}
Square 11.
x=\frac{-11±\sqrt{121-24\left(-35\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-11±\sqrt{121+840}}{2\times 6}
Multiply -24 times -35.
x=\frac{-11±\sqrt{961}}{2\times 6}
Add 121 to 840.
x=\frac{-11±31}{2\times 6}
Take the square root of 961.
x=\frac{-11±31}{12}
Multiply 2 times 6.
x=\frac{20}{12}
Now solve the equation x=\frac{-11±31}{12} when ± is plus. Add -11 to 31.
x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x=-\frac{42}{12}
Now solve the equation x=\frac{-11±31}{12} when ± is minus. Subtract 31 from -11.
x=-\frac{7}{2}
Reduce the fraction \frac{-42}{12} to lowest terms by extracting and canceling out 6.
x=\frac{5}{3} x=-\frac{7}{2}
The equation is now solved.
6x^{2}+11x-35=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+11x-35-\left(-35\right)=-\left(-35\right)
Add 35 to both sides of the equation.
6x^{2}+11x=-\left(-35\right)
Subtracting -35 from itself leaves 0.
6x^{2}+11x=35
Subtract -35 from 0.
\frac{6x^{2}+11x}{6}=\frac{35}{6}
Divide both sides by 6.
x^{2}+\frac{11}{6}x=\frac{35}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=\frac{35}{6}+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{35}{6}+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{961}{144}
Add \frac{35}{6} to \frac{121}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{12}\right)^{2}=\frac{961}{144}
Factor x^{2}+\frac{11}{6}x+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{961}{144}}
Take the square root of both sides of the equation.
x+\frac{11}{12}=\frac{31}{12} x+\frac{11}{12}=-\frac{31}{12}
Simplify.
x=\frac{5}{3} x=-\frac{7}{2}
Subtract \frac{11}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}