Solve for a
a=\frac{\sqrt{555}i}{6}+\frac{1}{2}\approx 0.5+3.92640633i
a=-\frac{\sqrt{555}i}{6}+\frac{1}{2}\approx 0.5-3.92640633i
Share
Copied to clipboard
6a^{2}+96-6a=2
Subtract 6a from both sides.
6a^{2}+96-6a-2=0
Subtract 2 from both sides.
6a^{2}+94-6a=0
Subtract 2 from 96 to get 94.
6a^{2}-6a+94=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6\times 94}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -6 for b, and 94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 6\times 94}}{2\times 6}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36-24\times 94}}{2\times 6}
Multiply -4 times 6.
a=\frac{-\left(-6\right)±\sqrt{36-2256}}{2\times 6}
Multiply -24 times 94.
a=\frac{-\left(-6\right)±\sqrt{-2220}}{2\times 6}
Add 36 to -2256.
a=\frac{-\left(-6\right)±2\sqrt{555}i}{2\times 6}
Take the square root of -2220.
a=\frac{6±2\sqrt{555}i}{2\times 6}
The opposite of -6 is 6.
a=\frac{6±2\sqrt{555}i}{12}
Multiply 2 times 6.
a=\frac{6+2\sqrt{555}i}{12}
Now solve the equation a=\frac{6±2\sqrt{555}i}{12} when ± is plus. Add 6 to 2i\sqrt{555}.
a=\frac{\sqrt{555}i}{6}+\frac{1}{2}
Divide 6+2i\sqrt{555} by 12.
a=\frac{-2\sqrt{555}i+6}{12}
Now solve the equation a=\frac{6±2\sqrt{555}i}{12} when ± is minus. Subtract 2i\sqrt{555} from 6.
a=-\frac{\sqrt{555}i}{6}+\frac{1}{2}
Divide 6-2i\sqrt{555} by 12.
a=\frac{\sqrt{555}i}{6}+\frac{1}{2} a=-\frac{\sqrt{555}i}{6}+\frac{1}{2}
The equation is now solved.
6a^{2}+96-6a=2
Subtract 6a from both sides.
6a^{2}-6a=2-96
Subtract 96 from both sides.
6a^{2}-6a=-94
Subtract 96 from 2 to get -94.
\frac{6a^{2}-6a}{6}=-\frac{94}{6}
Divide both sides by 6.
a^{2}+\left(-\frac{6}{6}\right)a=-\frac{94}{6}
Dividing by 6 undoes the multiplication by 6.
a^{2}-a=-\frac{94}{6}
Divide -6 by 6.
a^{2}-a=-\frac{47}{3}
Reduce the fraction \frac{-94}{6} to lowest terms by extracting and canceling out 2.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=-\frac{47}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-a+\frac{1}{4}=-\frac{47}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-a+\frac{1}{4}=-\frac{185}{12}
Add -\frac{47}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{1}{2}\right)^{2}=-\frac{185}{12}
Factor a^{2}-a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{185}{12}}
Take the square root of both sides of the equation.
a-\frac{1}{2}=\frac{\sqrt{555}i}{6} a-\frac{1}{2}=-\frac{\sqrt{555}i}{6}
Simplify.
a=\frac{\sqrt{555}i}{6}+\frac{1}{2} a=-\frac{\sqrt{555}i}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}