Solve for h
h=0.021
Share
Copied to clipboard
6\times 10^{3}\times 10\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{-2}\times 6\times 10^{3}\times 10+5.4\times 10}{0.2\times 0.3}
To multiply powers of the same base, add their exponents. Add 4 and -2 to get 2.
6\times 10^{4}\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{-2}\times 6\times 10^{3}\times 10+5.4\times 10}{0.2\times 0.3}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
6\times 10^{4}\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{1}\times 6\times 10+5.4\times 10}{0.2\times 0.3}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
6\times 10^{4}\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
6\times 10000\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Calculate 10 to the power of 4 and get 10000.
60000\left(\frac{12}{0.6\times 10^{2}\times 4}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Multiply 6 and 10000 to get 60000.
60000\left(\frac{12}{0.6\times 100\times 4}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Calculate 10 to the power of 2 and get 100.
60000\left(\frac{12}{60\times 4}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Multiply 0.6 and 100 to get 60.
60000\left(\frac{12}{240}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Multiply 60 and 4 to get 240.
60000\left(\frac{1}{20}-h\right)=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Reduce the fraction \frac{12}{240} to lowest terms by extracting and canceling out 12.
3000-60000h=\frac{h\times 4\times 10^{2}\times 6+5.4\times 10}{0.2\times 0.3}
Use the distributive property to multiply 60000 by \frac{1}{20}-h.
3000-60000h=\frac{h\times 4\times 100\times 6+5.4\times 10}{0.2\times 0.3}
Calculate 10 to the power of 2 and get 100.
3000-60000h=\frac{h\times 400\times 6+5.4\times 10}{0.2\times 0.3}
Multiply 4 and 100 to get 400.
3000-60000h=\frac{h\times 2400+5.4\times 10}{0.2\times 0.3}
Multiply 400 and 6 to get 2400.
3000-60000h=\frac{h\times 2400+54}{0.2\times 0.3}
Multiply 5.4 and 10 to get 54.
3000-60000h=\frac{h\times 2400+54}{0.06}
Multiply 0.2 and 0.3 to get 0.06.
3000-60000h=\frac{h\times 2400}{0.06}+\frac{54}{0.06}
Divide each term of h\times 2400+54 by 0.06 to get \frac{h\times 2400}{0.06}+\frac{54}{0.06}.
3000-60000h=h\times 40000+\frac{54}{0.06}
Divide h\times 2400 by 0.06 to get h\times 40000.
3000-60000h=h\times 40000+\frac{5400}{6}
Expand \frac{54}{0.06} by multiplying both numerator and the denominator by 100.
3000-60000h=h\times 40000+900
Divide 5400 by 6 to get 900.
3000-60000h-h\times 40000=900
Subtract h\times 40000 from both sides.
3000-100000h=900
Combine -60000h and -h\times 40000 to get -100000h.
-100000h=900-3000
Subtract 3000 from both sides.
-100000h=-2100
Subtract 3000 from 900 to get -2100.
h=\frac{-2100}{-100000}
Divide both sides by -100000.
h=\frac{21}{1000}
Reduce the fraction \frac{-2100}{-100000} to lowest terms by extracting and canceling out -100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}