Solve for N
N=\frac{1}{4}=0.25
N = \frac{25}{9} = 2\frac{7}{9} \approx 2.777777778
Share
Copied to clipboard
6\sqrt{N}=13-5\sqrt{\frac{1}{N}}
Subtract 5\sqrt{\frac{1}{N}} from both sides of the equation.
\left(6\sqrt{N}\right)^{2}=\left(13-5\sqrt{\frac{1}{N}}\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{N}\right)^{2}=\left(13-5\sqrt{\frac{1}{N}}\right)^{2}
Expand \left(6\sqrt{N}\right)^{2}.
36\left(\sqrt{N}\right)^{2}=\left(13-5\sqrt{\frac{1}{N}}\right)^{2}
Calculate 6 to the power of 2 and get 36.
36N=\left(13-5\sqrt{\frac{1}{N}}\right)^{2}
Calculate \sqrt{N} to the power of 2 and get N.
36N=169-130\sqrt{\frac{1}{N}}+25\left(\sqrt{\frac{1}{N}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-5\sqrt{\frac{1}{N}}\right)^{2}.
36N=169-130\sqrt{\frac{1}{N}}+25\times \frac{1}{N}
Calculate \sqrt{\frac{1}{N}} to the power of 2 and get \frac{1}{N}.
36N=169-130\sqrt{\frac{1}{N}}+\frac{25}{N}
Express 25\times \frac{1}{N} as a single fraction.
36N=\frac{169N}{N}-130\sqrt{\frac{1}{N}}+\frac{25}{N}
To add or subtract expressions, expand them to make their denominators the same. Multiply 169 times \frac{N}{N}.
36N=\frac{169N+25}{N}-130\sqrt{\frac{1}{N}}
Since \frac{169N}{N} and \frac{25}{N} have the same denominator, add them by adding their numerators.
36NN=169N+25-130\sqrt{\frac{1}{N}}N
Multiply both sides of the equation by N.
36NN=169N-130\sqrt{\frac{1}{N}}N+25
Reorder the terms.
36NN-\left(169N+25\right)=-130\sqrt{\frac{1}{N}}N
Subtract 169N+25 from both sides of the equation.
36N^{2}-\left(169N+25\right)=-130\sqrt{\frac{1}{N}}N
Multiply N and N to get N^{2}.
36N^{2}-169N-25=-130\sqrt{\frac{1}{N}}N
To find the opposite of 169N+25, find the opposite of each term.
\left(36N^{2}-169N-25\right)^{2}=\left(-130\sqrt{\frac{1}{N}}N\right)^{2}
Square both sides of the equation.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=\left(-130\sqrt{\frac{1}{N}}N\right)^{2}
Square 36N^{2}-169N-25.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=\left(-130\right)^{2}\left(\sqrt{\frac{1}{N}}\right)^{2}N^{2}
Expand \left(-130\sqrt{\frac{1}{N}}N\right)^{2}.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=16900\left(\sqrt{\frac{1}{N}}\right)^{2}N^{2}
Calculate -130 to the power of 2 and get 16900.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=16900\times \frac{1}{N}N^{2}
Calculate \sqrt{\frac{1}{N}} to the power of 2 and get \frac{1}{N}.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=\frac{16900}{N}N^{2}
Express 16900\times \frac{1}{N} as a single fraction.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=\frac{16900N^{2}}{N}
Express \frac{16900}{N}N^{2} as a single fraction.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625=16900N
Cancel out N in both numerator and denominator.
1296N^{4}-12168N^{3}+26761N^{2}+8450N+625-16900N=0
Subtract 16900N from both sides.
1296N^{4}-12168N^{3}+26761N^{2}-8450N+625=0
Combine 8450N and -16900N to get -8450N.
±\frac{625}{1296},±\frac{625}{648},±\frac{625}{432},±\frac{625}{324},±\frac{625}{216},±\frac{625}{162},±\frac{625}{144},±\frac{625}{108},±\frac{625}{81},±\frac{625}{72},±\frac{625}{54},±\frac{625}{48},±\frac{625}{36},±\frac{625}{27},±\frac{625}{24},±\frac{625}{18},±\frac{625}{16},±\frac{625}{12},±\frac{625}{9},±\frac{625}{8},±\frac{625}{6},±\frac{625}{4},±\frac{625}{3},±\frac{625}{2},±625,±\frac{125}{1296},±\frac{125}{648},±\frac{125}{432},±\frac{125}{324},±\frac{125}{216},±\frac{125}{162},±\frac{125}{144},±\frac{125}{108},±\frac{125}{81},±\frac{125}{72},±\frac{125}{54},±\frac{125}{48},±\frac{125}{36},±\frac{125}{27},±\frac{125}{24},±\frac{125}{18},±\frac{125}{16},±\frac{125}{12},±\frac{125}{9},±\frac{125}{8},±\frac{125}{6},±\frac{125}{4},±\frac{125}{3},±\frac{125}{2},±125,±\frac{25}{1296},±\frac{25}{648},±\frac{25}{432},±\frac{25}{324},±\frac{25}{216},±\frac{25}{162},±\frac{25}{144},±\frac{25}{108},±\frac{25}{81},±\frac{25}{72},±\frac{25}{54},±\frac{25}{48},±\frac{25}{36},±\frac{25}{27},±\frac{25}{24},±\frac{25}{18},±\frac{25}{16},±\frac{25}{12},±\frac{25}{9},±\frac{25}{8},±\frac{25}{6},±\frac{25}{4},±\frac{25}{3},±\frac{25}{2},±25,±\frac{5}{1296},±\frac{5}{648},±\frac{5}{432},±\frac{5}{324},±\frac{5}{216},±\frac{5}{162},±\frac{5}{144},±\frac{5}{108},±\frac{5}{81},±\frac{5}{72},±\frac{5}{54},±\frac{5}{48},±\frac{5}{36},±\frac{5}{27},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{1296},±\frac{1}{648},±\frac{1}{432},±\frac{1}{324},±\frac{1}{216},±\frac{1}{162},±\frac{1}{144},±\frac{1}{108},±\frac{1}{81},±\frac{1}{72},±\frac{1}{54},±\frac{1}{48},±\frac{1}{36},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 625 and q divides the leading coefficient 1296. List all candidates \frac{p}{q}.
N=\frac{1}{9}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
144N^{3}-1336N^{2}+2825N-625=0
By Factor theorem, N-k is a factor of the polynomial for each root k. Divide 1296N^{4}-12168N^{3}+26761N^{2}-8450N+625 by 9\left(N-\frac{1}{9}\right)=9N-1 to get 144N^{3}-1336N^{2}+2825N-625. Solve the equation where the result equals to 0.
±\frac{625}{144},±\frac{625}{72},±\frac{625}{48},±\frac{625}{36},±\frac{625}{24},±\frac{625}{18},±\frac{625}{16},±\frac{625}{12},±\frac{625}{9},±\frac{625}{8},±\frac{625}{6},±\frac{625}{4},±\frac{625}{3},±\frac{625}{2},±625,±\frac{125}{144},±\frac{125}{72},±\frac{125}{48},±\frac{125}{36},±\frac{125}{24},±\frac{125}{18},±\frac{125}{16},±\frac{125}{12},±\frac{125}{9},±\frac{125}{8},±\frac{125}{6},±\frac{125}{4},±\frac{125}{3},±\frac{125}{2},±125,±\frac{25}{144},±\frac{25}{72},±\frac{25}{48},±\frac{25}{36},±\frac{25}{24},±\frac{25}{18},±\frac{25}{16},±\frac{25}{12},±\frac{25}{9},±\frac{25}{8},±\frac{25}{6},±\frac{25}{4},±\frac{25}{3},±\frac{25}{2},±25,±\frac{5}{144},±\frac{5}{72},±\frac{5}{48},±\frac{5}{36},±\frac{5}{24},±\frac{5}{18},±\frac{5}{16},±\frac{5}{12},±\frac{5}{9},±\frac{5}{8},±\frac{5}{6},±\frac{5}{4},±\frac{5}{3},±\frac{5}{2},±5,±\frac{1}{144},±\frac{1}{72},±\frac{1}{48},±\frac{1}{36},±\frac{1}{24},±\frac{1}{18},±\frac{1}{16},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -625 and q divides the leading coefficient 144. List all candidates \frac{p}{q}.
N=\frac{1}{4}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
36N^{2}-325N+625=0
By Factor theorem, N-k is a factor of the polynomial for each root k. Divide 144N^{3}-1336N^{2}+2825N-625 by 4\left(N-\frac{1}{4}\right)=4N-1 to get 36N^{2}-325N+625. Solve the equation where the result equals to 0.
N=\frac{-\left(-325\right)±\sqrt{\left(-325\right)^{2}-4\times 36\times 625}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 36 for a, -325 for b, and 625 for c in the quadratic formula.
N=\frac{325±125}{72}
Do the calculations.
N=\frac{25}{9} N=\frac{25}{4}
Solve the equation 36N^{2}-325N+625=0 when ± is plus and when ± is minus.
N=\frac{1}{9} N=\frac{1}{4} N=\frac{25}{9} N=\frac{25}{4}
List all found solutions.
6\sqrt{\frac{1}{9}}+5\sqrt{\frac{1}{\frac{1}{9}}}=13
Substitute \frac{1}{9} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
17=13
Simplify. The value N=\frac{1}{9} does not satisfy the equation.
6\sqrt{\frac{1}{4}}+5\sqrt{\frac{1}{\frac{1}{4}}}=13
Substitute \frac{1}{4} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
13=13
Simplify. The value N=\frac{1}{4} satisfies the equation.
6\sqrt{\frac{25}{9}}+5\sqrt{\frac{1}{\frac{25}{9}}}=13
Substitute \frac{25}{9} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
13=13
Simplify. The value N=\frac{25}{9} satisfies the equation.
6\sqrt{\frac{25}{4}}+5\sqrt{\frac{1}{\frac{25}{4}}}=13
Substitute \frac{25}{4} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
17=13
Simplify. The value N=\frac{25}{4} does not satisfy the equation.
6\sqrt{\frac{1}{4}}+5\sqrt{\frac{1}{\frac{1}{4}}}=13
Substitute \frac{1}{4} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
13=13
Simplify. The value N=\frac{1}{4} satisfies the equation.
6\sqrt{\frac{25}{9}}+5\sqrt{\frac{1}{\frac{25}{9}}}=13
Substitute \frac{25}{9} for N in the equation 6\sqrt{N}+5\sqrt{\frac{1}{N}}=13.
13=13
Simplify. The value N=\frac{25}{9} satisfies the equation.
N=\frac{1}{4} N=\frac{25}{9}
List all solutions of 6\sqrt{N}=13-5\sqrt{\frac{1}{N}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}