Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(1+x\right)+6\left(1+x\right)^{2}=17.34-6
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
6+6x+6\left(1+x\right)^{2}=17.34-6
Use the distributive property to multiply 6 by 1+x.
6+6x+6\left(1+2x+x^{2}\right)=17.34-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
6+6x+6+12x+6x^{2}=17.34-6
Use the distributive property to multiply 6 by 1+2x+x^{2}.
12+6x+12x+6x^{2}=17.34-6
Add 6 and 6 to get 12.
12+18x+6x^{2}=17.34-6
Combine 6x and 12x to get 18x.
12+18x+6x^{2}=11.34
Subtract 6 from 17.34 to get 11.34.
12+18x+6x^{2}-11.34=0
Subtract 11.34 from both sides.
0.66+18x+6x^{2}=0
Subtract 11.34 from 12 to get 0.66.
6x^{2}+18x+0.66=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\times 6\times 0.66}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 18 for b, and 0.66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 6\times 0.66}}{2\times 6}
Square 18.
x=\frac{-18±\sqrt{324-24\times 0.66}}{2\times 6}
Multiply -4 times 6.
x=\frac{-18±\sqrt{324-15.84}}{2\times 6}
Multiply -24 times 0.66.
x=\frac{-18±\sqrt{308.16}}{2\times 6}
Add 324 to -15.84.
x=\frac{-18±\frac{6\sqrt{214}}{5}}{2\times 6}
Take the square root of 308.16.
x=\frac{-18±\frac{6\sqrt{214}}{5}}{12}
Multiply 2 times 6.
x=\frac{\frac{6\sqrt{214}}{5}-18}{12}
Now solve the equation x=\frac{-18±\frac{6\sqrt{214}}{5}}{12} when ± is plus. Add -18 to \frac{6\sqrt{214}}{5}.
x=\frac{\sqrt{214}}{10}-\frac{3}{2}
Divide -18+\frac{6\sqrt{214}}{5} by 12.
x=\frac{-\frac{6\sqrt{214}}{5}-18}{12}
Now solve the equation x=\frac{-18±\frac{6\sqrt{214}}{5}}{12} when ± is minus. Subtract \frac{6\sqrt{214}}{5} from -18.
x=-\frac{\sqrt{214}}{10}-\frac{3}{2}
Divide -18-\frac{6\sqrt{214}}{5} by 12.
x=\frac{\sqrt{214}}{10}-\frac{3}{2} x=-\frac{\sqrt{214}}{10}-\frac{3}{2}
The equation is now solved.
6\left(1+x\right)+6\left(1+x\right)^{2}=17.34-6
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
6+6x+6\left(1+x\right)^{2}=17.34-6
Use the distributive property to multiply 6 by 1+x.
6+6x+6\left(1+2x+x^{2}\right)=17.34-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
6+6x+6+12x+6x^{2}=17.34-6
Use the distributive property to multiply 6 by 1+2x+x^{2}.
12+6x+12x+6x^{2}=17.34-6
Add 6 and 6 to get 12.
12+18x+6x^{2}=17.34-6
Combine 6x and 12x to get 18x.
12+18x+6x^{2}=11.34
Subtract 6 from 17.34 to get 11.34.
18x+6x^{2}=11.34-12
Subtract 12 from both sides.
18x+6x^{2}=-0.66
Subtract 12 from 11.34 to get -0.66.
6x^{2}+18x=-0.66
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+18x}{6}=-\frac{0.66}{6}
Divide both sides by 6.
x^{2}+\frac{18}{6}x=-\frac{0.66}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+3x=-\frac{0.66}{6}
Divide 18 by 6.
x^{2}+3x=-0.11
Divide -0.66 by 6.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-0.11+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-0.11+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{107}{50}
Add -0.11 to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{107}{50}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{107}{50}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{214}}{10} x+\frac{3}{2}=-\frac{\sqrt{214}}{10}
Simplify.
x=\frac{\sqrt{214}}{10}-\frac{3}{2} x=-\frac{\sqrt{214}}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.