Solve for x
x = \frac{28697}{15} = 1913\frac{2}{15} \approx 1913.133333333
x = -\frac{28691}{15} = -1912\frac{11}{15} \approx -1912.733333333
Graph
Share
Copied to clipboard
6|-5x+1|-9=57379
Combine like terms and use the properties of equality to get the variable on one side of the equal sign and the numbers on the other side. Remember to follow the order of operations.
6|-5x+1|=57388
Add 9 to both sides of the equation.
|-5x+1|=\frac{28694}{3}
Divide both sides by 6.
-5x+1=\frac{28694}{3} -5x+1=-\frac{28694}{3}
Use the definition of absolute value.
-5x=\frac{28691}{3} -5x=-\frac{28697}{3}
Subtract 1 from both sides of the equation.
x=-\frac{28691}{15} x=\frac{28697}{15}
Divide both sides by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}