Evaluate
\frac{19}{12}\approx 1.583333333
Factor
\frac{19}{3 \cdot 2 ^ {2}} = 1\frac{7}{12} = 1.5833333333333333
Share
Copied to clipboard
\frac{30+2}{5}-\left(0.15+\frac{4\times 3+2}{3}\right)
Multiply 6 and 5 to get 30.
\frac{32}{5}-\left(0.15+\frac{4\times 3+2}{3}\right)
Add 30 and 2 to get 32.
\frac{32}{5}-\left(0.15+\frac{12+2}{3}\right)
Multiply 4 and 3 to get 12.
\frac{32}{5}-\left(0.15+\frac{14}{3}\right)
Add 12 and 2 to get 14.
\frac{32}{5}-\left(\frac{3}{20}+\frac{14}{3}\right)
Convert decimal number 0.15 to fraction \frac{15}{100}. Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{32}{5}-\left(\frac{9}{60}+\frac{280}{60}\right)
Least common multiple of 20 and 3 is 60. Convert \frac{3}{20} and \frac{14}{3} to fractions with denominator 60.
\frac{32}{5}-\frac{9+280}{60}
Since \frac{9}{60} and \frac{280}{60} have the same denominator, add them by adding their numerators.
\frac{32}{5}-\frac{289}{60}
Add 9 and 280 to get 289.
\frac{384}{60}-\frac{289}{60}
Least common multiple of 5 and 60 is 60. Convert \frac{32}{5} and \frac{289}{60} to fractions with denominator 60.
\frac{384-289}{60}
Since \frac{384}{60} and \frac{289}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{95}{60}
Subtract 289 from 384 to get 95.
\frac{19}{12}
Reduce the fraction \frac{95}{60} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}