Solve for h
\left\{\begin{matrix}h=6ks\text{, }&s\neq 0\text{ and }k\neq 0\\h\neq 0\text{, }&m=0\text{ and }s\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{h}{6s}\text{, }&h\neq 0\text{ and }s\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Share
Copied to clipboard
6s\times \frac{km}{h}=1m
Multiply both sides of the equation by s^{2}, the least common multiple of s,s^{2}.
\frac{6km}{h}s=1m
Express 6\times \frac{km}{h} as a single fraction.
\frac{6kms}{h}=1m
Express \frac{6km}{h}s as a single fraction.
6kms=1mh
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
6kms=hm
Reorder the terms.
hm=6kms
Swap sides so that all variable terms are on the left hand side.
mh=6kms
The equation is in standard form.
\frac{mh}{m}=\frac{6kms}{m}
Divide both sides by m.
h=\frac{6kms}{m}
Dividing by m undoes the multiplication by m.
h=6ks
Divide 6kms by m.
h=6ks\text{, }h\neq 0
Variable h cannot be equal to 0.
6s\times \frac{km}{h}=1m
Multiply both sides of the equation by s^{2}, the least common multiple of s,s^{2}.
\frac{6km}{h}s=1m
Express 6\times \frac{km}{h} as a single fraction.
\frac{6kms}{h}=1m
Express \frac{6km}{h}s as a single fraction.
6kms=1mh
Multiply both sides of the equation by h.
6kms=hm
Reorder the terms.
6msk=hm
The equation is in standard form.
\frac{6msk}{6ms}=\frac{hm}{6ms}
Divide both sides by 6ms.
k=\frac{hm}{6ms}
Dividing by 6ms undoes the multiplication by 6ms.
k=\frac{h}{6s}
Divide hm by 6ms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}