Solve for x
x\leq \frac{563}{10}
Graph
Share
Copied to clipboard
\frac{1}{5}+x-6-50\leq \frac{1}{2}
Reduce the fraction \frac{6}{30} to lowest terms by extracting and canceling out 6.
\frac{1}{5}+x-\frac{30}{5}-50\leq \frac{1}{2}
Convert 6 to fraction \frac{30}{5}.
\frac{1-30}{5}+x-50\leq \frac{1}{2}
Since \frac{1}{5} and \frac{30}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{5}+x-50\leq \frac{1}{2}
Subtract 30 from 1 to get -29.
-\frac{29}{5}+x-\frac{250}{5}\leq \frac{1}{2}
Convert 50 to fraction \frac{250}{5}.
\frac{-29-250}{5}+x\leq \frac{1}{2}
Since -\frac{29}{5} and \frac{250}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{279}{5}+x\leq \frac{1}{2}
Subtract 250 from -29 to get -279.
x\leq \frac{1}{2}+\frac{279}{5}
Add \frac{279}{5} to both sides.
x\leq \frac{5}{10}+\frac{558}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{279}{5} to fractions with denominator 10.
x\leq \frac{5+558}{10}
Since \frac{5}{10} and \frac{558}{10} have the same denominator, add them by adding their numerators.
x\leq \frac{563}{10}
Add 5 and 558 to get 563.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}