Solve for s
s=2\left(3i\left(\cos(x)\right)^{2}-2i\right)
Solve for x
x=\frac{1}{2}i\ln(6)+\left(-i\right)\ln(\left(4+\left(-i\right)s\right)^{\frac{1}{2}}+\left(-2+\left(-i\right)s\right)^{\frac{1}{2}})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
x=\left(-\frac{1}{2}i\right)\ln(6)+\left(-i\right)\ln(\frac{1}{6}\left(4+\left(-i\right)s\right)^{\frac{1}{2}}+\left(-\frac{1}{6}\right)\left(-2+\left(-i\right)s\right)^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
x=\frac{1}{2}i\ln(6)+\left(-i\right)\ln(\left(-1\right)\left(4+\left(-i\right)s\right)^{\frac{1}{2}}+\left(-2+\left(-i\right)s\right)^{\frac{1}{2}})+2\pi n_{14}\text{, }n_{14}\in \mathrm{Z}
x=\left(-\frac{1}{2}i\right)\ln(6)+\left(-i\right)\ln(\left(-\frac{1}{6}\right)\left(4+\left(-i\right)s\right)^{\frac{1}{2}}+\left(-\frac{1}{6}\right)\left(-2+\left(-i\right)s\right)^{\frac{1}{2}})+2\pi n_{13}\text{, }n_{13}\in \mathrm{Z}
Share
Copied to clipboard
4-si=6\left(\cos(x)\right)^{2}
Swap sides so that all variable terms are on the left hand side.
4-is=6\left(\cos(x)\right)^{2}
Multiply -1 and i to get -i.
-is=6\left(\cos(x)\right)^{2}-4
Subtract 4 from both sides.
\frac{-is}{-i}=\frac{2\left(3\left(\cos(x)\right)^{2}-2\right)}{-i}
Divide both sides by -i.
s=\frac{2\left(3\left(\cos(x)\right)^{2}-2\right)}{-i}
Dividing by -i undoes the multiplication by -i.
s=2\left(3i\left(\cos(x)\right)^{2}-2i\right)
Divide 2\left(3\left(\cos(x)\right)^{2}-2\right) by -i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}