6 \cdot ( v - 1,4 ) = 3
Solve for v
v=1,9
Share
Copied to clipboard
v-1,4=\frac{3}{6}
Divide both sides by 6.
v-1,4=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
v=\frac{1}{2}+1,4
Add 1,4 to both sides.
v=\frac{1}{2}+\frac{7}{5}
Convert decimal number 1,4 to fraction \frac{14}{10}. Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
v=\frac{5}{10}+\frac{14}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{7}{5} to fractions with denominator 10.
v=\frac{5+14}{10}
Since \frac{5}{10} and \frac{14}{10} have the same denominator, add them by adding their numerators.
v=\frac{19}{10}
Add 5 and 14 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}