Evaluate
-\frac{21c}{2}-6a-48b
Expand
-\frac{21c}{2}-6a-48b
Share
Copied to clipboard
6\left(-a-8b-\frac{7c}{4}\right)
Express 7\times \frac{c}{4} as a single fraction.
6\left(\frac{4\left(-a-8b\right)}{4}-\frac{7c}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-8b times \frac{4}{4}.
6\times \frac{4\left(-a-8b\right)-7c}{4}
Since \frac{4\left(-a-8b\right)}{4} and \frac{7c}{4} have the same denominator, subtract them by subtracting their numerators.
6\times \frac{-4a-32b-7c}{4}
Do the multiplications in 4\left(-a-8b\right)-7c.
\frac{6\left(-4a-32b-7c\right)}{4}
Express 6\times \frac{-4a-32b-7c}{4} as a single fraction.
\frac{-24a-192b-42c}{4}
Use the distributive property to multiply 6 by -4a-32b-7c.
6\left(-a-8b-\frac{7c}{4}\right)
Express 7\times \frac{c}{4} as a single fraction.
6\left(\frac{4\left(-a-8b\right)}{4}-\frac{7c}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-8b times \frac{4}{4}.
6\times \frac{4\left(-a-8b\right)-7c}{4}
Since \frac{4\left(-a-8b\right)}{4} and \frac{7c}{4} have the same denominator, subtract them by subtracting their numerators.
6\times \frac{-4a-32b-7c}{4}
Do the multiplications in 4\left(-a-8b\right)-7c.
\frac{6\left(-4a-32b-7c\right)}{4}
Express 6\times \frac{-4a-32b-7c}{4} as a single fraction.
\frac{-24a-192b-42c}{4}
Use the distributive property to multiply 6 by -4a-32b-7c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}