Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6^{3x-1}=\frac{1}{6}
Use the rules of exponents and logarithms to solve the equation.
\log(6^{3x-1})=\log(\frac{1}{6})
Take the logarithm of both sides of the equation.
\left(3x-1\right)\log(6)=\log(\frac{1}{6})
The logarithm of a number raised to a power is the power times the logarithm of the number.
3x-1=\frac{\log(\frac{1}{6})}{\log(6)}
Divide both sides by \log(6).
3x-1=\log_{6}\left(\frac{1}{6}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
3x=-1-\left(-1\right)
Add 1 to both sides of the equation.
x=\frac{0}{3}
Divide both sides by 3.