Evaluate
27\left(x\left(x+7\right)+8\right)\left(x^{2}-1\right)^{2}
Expand
27x^{6}+189x^{5}+162x^{4}-378x^{3}-405x^{2}+189x+216
Graph
Share
Copied to clipboard
6^{3}\left(x-1\right)^{2}\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
216\left(x-1\right)^{2}\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Calculate 6 to the power of 3 and get 216.
216\left(x^{2}-2x+1\right)\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
216\left(x^{2}-2x+1\right)\left(x^{3}+3x^{2}+3x+1\right)+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
\left(216x^{2}-432x+216\right)\left(x^{3}+3x^{2}+3x+1\right)+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use the distributive property to multiply 216 by x^{2}-2x+1.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use the distributive property to multiply 216x^{2}-432x+216 by x^{3}+3x^{2}+3x+1 and combine like terms.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x+1\right)^{2}\left(x-1\right)^{3}x
Calculate 3 to the power of 3 and get 27.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x^{2}+2x+1\right)\left(x-1\right)^{3}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x^{2}+2x+1\right)\left(x^{3}-3x^{2}+3x-1\right)x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+\left(27x^{2}+54x+27\right)\left(x^{3}-3x^{2}+3x-1\right)x
Use the distributive property to multiply 27 by x^{2}+2x+1.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+\left(27x^{5}-27x^{4}-54x^{3}+54x^{2}+27x-27\right)x
Use the distributive property to multiply 27x^{2}+54x+27 by x^{3}-3x^{2}+3x-1 and combine like terms.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}-27x^{5}-54x^{4}+54x^{3}+27x^{2}-27x
Use the distributive property to multiply 27x^{5}-27x^{4}-54x^{3}+54x^{2}+27x-27 by x.
189x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}-54x^{4}+54x^{3}+27x^{2}-27x
Combine 216x^{5} and -27x^{5} to get 189x^{5}.
189x^{5}+162x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}+54x^{3}+27x^{2}-27x
Combine 216x^{4} and -54x^{4} to get 162x^{4}.
189x^{5}+162x^{4}-378x^{3}-432x^{2}+216x+216+27x^{6}+27x^{2}-27x
Combine -432x^{3} and 54x^{3} to get -378x^{3}.
189x^{5}+162x^{4}-378x^{3}-405x^{2}+216x+216+27x^{6}-27x
Combine -432x^{2} and 27x^{2} to get -405x^{2}.
189x^{5}+162x^{4}-378x^{3}-405x^{2}+189x+216+27x^{6}
Combine 216x and -27x to get 189x.
6^{3}\left(x-1\right)^{2}\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
216\left(x-1\right)^{2}\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Calculate 6 to the power of 3 and get 216.
216\left(x^{2}-2x+1\right)\left(x+1\right)^{3}+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
216\left(x^{2}-2x+1\right)\left(x^{3}+3x^{2}+3x+1\right)+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
\left(216x^{2}-432x+216\right)\left(x^{3}+3x^{2}+3x+1\right)+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use the distributive property to multiply 216 by x^{2}-2x+1.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+3^{3}\left(x+1\right)^{2}\left(x-1\right)^{3}x
Use the distributive property to multiply 216x^{2}-432x+216 by x^{3}+3x^{2}+3x+1 and combine like terms.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x+1\right)^{2}\left(x-1\right)^{3}x
Calculate 3 to the power of 3 and get 27.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x^{2}+2x+1\right)\left(x-1\right)^{3}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27\left(x^{2}+2x+1\right)\left(x^{3}-3x^{2}+3x-1\right)x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+\left(27x^{2}+54x+27\right)\left(x^{3}-3x^{2}+3x-1\right)x
Use the distributive property to multiply 27 by x^{2}+2x+1.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+\left(27x^{5}-27x^{4}-54x^{3}+54x^{2}+27x-27\right)x
Use the distributive property to multiply 27x^{2}+54x+27 by x^{3}-3x^{2}+3x-1 and combine like terms.
216x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}-27x^{5}-54x^{4}+54x^{3}+27x^{2}-27x
Use the distributive property to multiply 27x^{5}-27x^{4}-54x^{3}+54x^{2}+27x-27 by x.
189x^{5}+216x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}-54x^{4}+54x^{3}+27x^{2}-27x
Combine 216x^{5} and -27x^{5} to get 189x^{5}.
189x^{5}+162x^{4}-432x^{3}-432x^{2}+216x+216+27x^{6}+54x^{3}+27x^{2}-27x
Combine 216x^{4} and -54x^{4} to get 162x^{4}.
189x^{5}+162x^{4}-378x^{3}-432x^{2}+216x+216+27x^{6}+27x^{2}-27x
Combine -432x^{3} and 54x^{3} to get -378x^{3}.
189x^{5}+162x^{4}-378x^{3}-405x^{2}+216x+216+27x^{6}-27x
Combine -432x^{2} and 27x^{2} to get -405x^{2}.
189x^{5}+162x^{4}-378x^{3}-405x^{2}+189x+216+27x^{6}
Combine 216x and -27x to get 189x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}