Solve for x
x=\sqrt{13}\approx 3.605551275
x=-\sqrt{13}\approx -3.605551275
Graph
Share
Copied to clipboard
36-x^{2}=4^{2}-\left(6-x^{2}\right)
Calculate 6 to the power of 2 and get 36.
36-x^{2}=16-\left(6-x^{2}\right)
Calculate 4 to the power of 2 and get 16.
36-x^{2}=16-6+x^{2}
To find the opposite of 6-x^{2}, find the opposite of each term.
36-x^{2}=10+x^{2}
Subtract 6 from 16 to get 10.
36-x^{2}-x^{2}=10
Subtract x^{2} from both sides.
36-2x^{2}=10
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}=10-36
Subtract 36 from both sides.
-2x^{2}=-26
Subtract 36 from 10 to get -26.
x^{2}=\frac{-26}{-2}
Divide both sides by -2.
x^{2}=13
Divide -26 by -2 to get 13.
x=\sqrt{13} x=-\sqrt{13}
Take the square root of both sides of the equation.
36-x^{2}=4^{2}-\left(6-x^{2}\right)
Calculate 6 to the power of 2 and get 36.
36-x^{2}=16-\left(6-x^{2}\right)
Calculate 4 to the power of 2 and get 16.
36-x^{2}=16-6+x^{2}
To find the opposite of 6-x^{2}, find the opposite of each term.
36-x^{2}=10+x^{2}
Subtract 6 from 16 to get 10.
36-x^{2}-10=x^{2}
Subtract 10 from both sides.
26-x^{2}=x^{2}
Subtract 10 from 36 to get 26.
26-x^{2}-x^{2}=0
Subtract x^{2} from both sides.
26-2x^{2}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+26=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 26}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 26}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\times 26}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{208}}{2\left(-2\right)}
Multiply 8 times 26.
x=\frac{0±4\sqrt{13}}{2\left(-2\right)}
Take the square root of 208.
x=\frac{0±4\sqrt{13}}{-4}
Multiply 2 times -2.
x=-\sqrt{13}
Now solve the equation x=\frac{0±4\sqrt{13}}{-4} when ± is plus.
x=\sqrt{13}
Now solve the equation x=\frac{0±4\sqrt{13}}{-4} when ± is minus.
x=-\sqrt{13} x=\sqrt{13}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}