Solve for t
t=\frac{\sqrt{17}+7}{16}\approx 0.695194102
t=\frac{7-\sqrt{17}}{16}\approx 0.179805898
Share
Copied to clipboard
-16t^{2}+14t+4=6
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+14t+4-6=0
Subtract 6 from both sides.
-16t^{2}+14t-2=0
Subtract 6 from 4 to get -2.
t=\frac{-14±\sqrt{14^{2}-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 14 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-14±\sqrt{196-4\left(-16\right)\left(-2\right)}}{2\left(-16\right)}
Square 14.
t=\frac{-14±\sqrt{196+64\left(-2\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-14±\sqrt{196-128}}{2\left(-16\right)}
Multiply 64 times -2.
t=\frac{-14±\sqrt{68}}{2\left(-16\right)}
Add 196 to -128.
t=\frac{-14±2\sqrt{17}}{2\left(-16\right)}
Take the square root of 68.
t=\frac{-14±2\sqrt{17}}{-32}
Multiply 2 times -16.
t=\frac{2\sqrt{17}-14}{-32}
Now solve the equation t=\frac{-14±2\sqrt{17}}{-32} when ± is plus. Add -14 to 2\sqrt{17}.
t=\frac{7-\sqrt{17}}{16}
Divide -14+2\sqrt{17} by -32.
t=\frac{-2\sqrt{17}-14}{-32}
Now solve the equation t=\frac{-14±2\sqrt{17}}{-32} when ± is minus. Subtract 2\sqrt{17} from -14.
t=\frac{\sqrt{17}+7}{16}
Divide -14-2\sqrt{17} by -32.
t=\frac{7-\sqrt{17}}{16} t=\frac{\sqrt{17}+7}{16}
The equation is now solved.
-16t^{2}+14t+4=6
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+14t=6-4
Subtract 4 from both sides.
-16t^{2}+14t=2
Subtract 4 from 6 to get 2.
\frac{-16t^{2}+14t}{-16}=\frac{2}{-16}
Divide both sides by -16.
t^{2}+\frac{14}{-16}t=\frac{2}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{7}{8}t=\frac{2}{-16}
Reduce the fraction \frac{14}{-16} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{7}{8}t=-\frac{1}{8}
Reduce the fraction \frac{2}{-16} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{7}{8}t+\left(-\frac{7}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
Divide -\frac{7}{8}, the coefficient of the x term, by 2 to get -\frac{7}{16}. Then add the square of -\frac{7}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{8}t+\frac{49}{256}=-\frac{1}{8}+\frac{49}{256}
Square -\frac{7}{16} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{7}{8}t+\frac{49}{256}=\frac{17}{256}
Add -\frac{1}{8} to \frac{49}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{7}{16}\right)^{2}=\frac{17}{256}
Factor t^{2}-\frac{7}{8}t+\frac{49}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{16}\right)^{2}}=\sqrt{\frac{17}{256}}
Take the square root of both sides of the equation.
t-\frac{7}{16}=\frac{\sqrt{17}}{16} t-\frac{7}{16}=-\frac{\sqrt{17}}{16}
Simplify.
t=\frac{\sqrt{17}+7}{16} t=\frac{7-\sqrt{17}}{16}
Add \frac{7}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}