6 : x = 1 \frac { 1 } { 5 } : 50 \%
Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
6=2x\times \frac{1\times 5+1}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
6=2x\times \frac{5+1}{5}
Multiply 1 and 5 to get 5.
6=2x\times \frac{6}{5}
Add 5 and 1 to get 6.
6=\frac{2\times 6}{5}x
Express 2\times \frac{6}{5} as a single fraction.
6=\frac{12}{5}x
Multiply 2 and 6 to get 12.
\frac{12}{5}x=6
Swap sides so that all variable terms are on the left hand side.
x=6\times \frac{5}{12}
Multiply both sides by \frac{5}{12}, the reciprocal of \frac{12}{5}.
x=\frac{6\times 5}{12}
Express 6\times \frac{5}{12} as a single fraction.
x=\frac{30}{12}
Multiply 6 and 5 to get 30.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}