Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6+x^{2}=\frac{7}{9}
Rewrite the square root of the division \frac{49}{81} as the division of square roots \frac{\sqrt{49}}{\sqrt{81}}. Take the square root of both numerator and denominator.
x^{2}=\frac{7}{9}-6
Subtract 6 from both sides.
x^{2}=-\frac{47}{9}
Subtract 6 from \frac{7}{9} to get -\frac{47}{9}.
x=\frac{\sqrt{47}i}{3} x=-\frac{\sqrt{47}i}{3}
The equation is now solved.
6+x^{2}=\frac{7}{9}
Rewrite the square root of the division \frac{49}{81} as the division of square roots \frac{\sqrt{49}}{\sqrt{81}}. Take the square root of both numerator and denominator.
6+x^{2}-\frac{7}{9}=0
Subtract \frac{7}{9} from both sides.
\frac{47}{9}+x^{2}=0
Subtract \frac{7}{9} from 6 to get \frac{47}{9}.
x^{2}+\frac{47}{9}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{47}{9}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and \frac{47}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{47}{9}}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{188}{9}}}{2}
Multiply -4 times \frac{47}{9}.
x=\frac{0±\frac{2\sqrt{47}i}{3}}{2}
Take the square root of -\frac{188}{9}.
x=\frac{\sqrt{47}i}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{47}i}{3}}{2} when ± is plus.
x=-\frac{\sqrt{47}i}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{47}i}{3}}{2} when ± is minus.
x=\frac{\sqrt{47}i}{3} x=-\frac{\sqrt{47}i}{3}
The equation is now solved.