Solve for n
n=7
Share
Copied to clipboard
18+\frac{84\times 4}{21\times 4-\frac{17\times 28}{n}+5\times 8}=24
Multiply both sides of the equation by 3.
18+\frac{336}{21\times 4-\frac{17\times 28}{n}+5\times 8}=24
Multiply 84 and 4 to get 336.
18+\frac{336}{84-\frac{17\times 28}{n}+40}=24
Do the multiplications.
18+\frac{336}{84-\frac{476}{n}+40}=24
Multiply 17 and 28 to get 476.
18+\frac{336}{124-\frac{476}{n}}=24
Add 84 and 40 to get 124.
18+\frac{336}{\frac{124n}{n}-\frac{476}{n}}=24
To add or subtract expressions, expand them to make their denominators the same. Multiply 124 times \frac{n}{n}.
18+\frac{336}{\frac{124n-476}{n}}=24
Since \frac{124n}{n} and \frac{476}{n} have the same denominator, subtract them by subtracting their numerators.
18+\frac{336n}{124n-476}=24
Variable n cannot be equal to 0 since division by zero is not defined. Divide 336 by \frac{124n-476}{n} by multiplying 336 by the reciprocal of \frac{124n-476}{n}.
18+\frac{336n}{4\left(31n-119\right)}=24
Factor the expressions that are not already factored in \frac{336n}{124n-476}.
18+\frac{84n}{31n-119}=24
Cancel out 4 in both numerator and denominator.
\frac{18\left(31n-119\right)}{31n-119}+\frac{84n}{31n-119}=24
To add or subtract expressions, expand them to make their denominators the same. Multiply 18 times \frac{31n-119}{31n-119}.
\frac{18\left(31n-119\right)+84n}{31n-119}=24
Since \frac{18\left(31n-119\right)}{31n-119} and \frac{84n}{31n-119} have the same denominator, add them by adding their numerators.
\frac{558n-2142+84n}{31n-119}=24
Do the multiplications in 18\left(31n-119\right)+84n.
\frac{642n-2142}{31n-119}=24
Combine like terms in 558n-2142+84n.
642n-2142=24\left(31n-119\right)
Variable n cannot be equal to \frac{119}{31} since division by zero is not defined. Multiply both sides of the equation by 31n-119.
642n-2142=744n-2856
Use the distributive property to multiply 24 by 31n-119.
642n-2142-744n=-2856
Subtract 744n from both sides.
-102n-2142=-2856
Combine 642n and -744n to get -102n.
-102n=-2856+2142
Add 2142 to both sides.
-102n=-714
Add -2856 and 2142 to get -714.
n=\frac{-714}{-102}
Divide both sides by -102.
n=7
Divide -714 by -102 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}