Solve for z
z=\frac{7}{15}+\frac{2}{5}i\approx 0.466666667+0.4i
Share
Copied to clipboard
15iz-7i=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
15iz=-6+7i
Add 7i to both sides.
z=\frac{-6+7i}{15i}
Divide both sides by 15i.
z=\frac{\left(-6+7i\right)i}{15i^{2}}
Multiply both numerator and denominator of \frac{-6+7i}{15i} by imaginary unit i.
z=\frac{\left(-6+7i\right)i}{-15}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-6i+7i^{2}}{-15}
Multiply -6+7i times i.
z=\frac{-6i+7\left(-1\right)}{-15}
By definition, i^{2} is -1.
z=\frac{-7-6i}{-15}
Do the multiplications in -6i+7\left(-1\right). Reorder the terms.
z=\frac{7}{15}+\frac{2}{5}i
Divide -7-6i by -15 to get \frac{7}{15}+\frac{2}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}