Solve for x (complex solution)
\left\{\begin{matrix}\\x=a^{2}-1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=i\text{ or }a=-i\end{matrix}\right.
Solve for x
x=a^{2}-1
Solve for a (complex solution)
a=\sqrt{x+1}
a=-\sqrt{x+1}
a=-i
a=i
Solve for a
a=-\sqrt{x+1}
a=\sqrt{x+1}\text{, }x\geq -1
Graph
Share
Copied to clipboard
6+a^{2}x+x=\left(a^{2}+1\right)^{2}-2\left(a^{2}-2\right)
Use the distributive property to multiply a^{2}+1 by x.
6+a^{2}x+x=\left(a^{2}\right)^{2}+2a^{2}+1-2\left(a^{2}-2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+1\right)^{2}.
6+a^{2}x+x=a^{4}+2a^{2}+1-2\left(a^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6+a^{2}x+x=a^{4}+2a^{2}+1-2a^{2}+4
Use the distributive property to multiply -2 by a^{2}-2.
6+a^{2}x+x=a^{4}+1+4
Combine 2a^{2} and -2a^{2} to get 0.
6+a^{2}x+x=a^{4}+5
Add 1 and 4 to get 5.
a^{2}x+x=a^{4}+5-6
Subtract 6 from both sides.
a^{2}x+x=a^{4}-1
Subtract 6 from 5 to get -1.
\left(a^{2}+1\right)x=a^{4}-1
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a^{4}-1}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a^{4}-1}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
x=a^{2}-1
Divide a^{4}-1 by a^{2}+1.
6+a^{2}x+x=\left(a^{2}+1\right)^{2}-2\left(a^{2}-2\right)
Use the distributive property to multiply a^{2}+1 by x.
6+a^{2}x+x=\left(a^{2}\right)^{2}+2a^{2}+1-2\left(a^{2}-2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+1\right)^{2}.
6+a^{2}x+x=a^{4}+2a^{2}+1-2\left(a^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6+a^{2}x+x=a^{4}+2a^{2}+1-2a^{2}+4
Use the distributive property to multiply -2 by a^{2}-2.
6+a^{2}x+x=a^{4}+1+4
Combine 2a^{2} and -2a^{2} to get 0.
6+a^{2}x+x=a^{4}+5
Add 1 and 4 to get 5.
a^{2}x+x=a^{4}+5-6
Subtract 6 from both sides.
a^{2}x+x=a^{4}-1
Subtract 6 from 5 to get -1.
\left(a^{2}+1\right)x=a^{4}-1
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a^{4}-1}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a^{4}-1}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
x=a^{2}-1
Divide a^{4}-1 by a^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}