Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

6+a^{2}x+x=\left(a^{2}+1\right)^{2}-2\left(a^{2}-2\right)
Use the distributive property to multiply a^{2}+1 by x.
6+a^{2}x+x=\left(a^{2}\right)^{2}+2a^{2}+1-2\left(a^{2}-2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+1\right)^{2}.
6+a^{2}x+x=a^{4}+2a^{2}+1-2\left(a^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6+a^{2}x+x=a^{4}+2a^{2}+1-2a^{2}+4
Use the distributive property to multiply -2 by a^{2}-2.
6+a^{2}x+x=a^{4}+1+4
Combine 2a^{2} and -2a^{2} to get 0.
6+a^{2}x+x=a^{4}+5
Add 1 and 4 to get 5.
a^{2}x+x=a^{4}+5-6
Subtract 6 from both sides.
a^{2}x+x=a^{4}-1
Subtract 6 from 5 to get -1.
\left(a^{2}+1\right)x=a^{4}-1
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a^{4}-1}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a^{4}-1}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
x=a^{2}-1
Divide a^{4}-1 by a^{2}+1.
6+a^{2}x+x=\left(a^{2}+1\right)^{2}-2\left(a^{2}-2\right)
Use the distributive property to multiply a^{2}+1 by x.
6+a^{2}x+x=\left(a^{2}\right)^{2}+2a^{2}+1-2\left(a^{2}-2\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+1\right)^{2}.
6+a^{2}x+x=a^{4}+2a^{2}+1-2\left(a^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6+a^{2}x+x=a^{4}+2a^{2}+1-2a^{2}+4
Use the distributive property to multiply -2 by a^{2}-2.
6+a^{2}x+x=a^{4}+1+4
Combine 2a^{2} and -2a^{2} to get 0.
6+a^{2}x+x=a^{4}+5
Add 1 and 4 to get 5.
a^{2}x+x=a^{4}+5-6
Subtract 6 from both sides.
a^{2}x+x=a^{4}-1
Subtract 6 from 5 to get -1.
\left(a^{2}+1\right)x=a^{4}-1
Combine all terms containing x.
\frac{\left(a^{2}+1\right)x}{a^{2}+1}=\frac{a^{4}-1}{a^{2}+1}
Divide both sides by a^{2}+1.
x=\frac{a^{4}-1}{a^{2}+1}
Dividing by a^{2}+1 undoes the multiplication by a^{2}+1.
x=a^{2}-1
Divide a^{4}-1 by a^{2}+1.