Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
5x-4x+14=2\left(3x-1\right)+\frac{7}{2}
Use the distributive property to multiply -2 by 2x-7.
x+14=2\left(3x-1\right)+\frac{7}{2}
Combine 5x and -4x to get x.
x+14=6x-2+\frac{7}{2}
Use the distributive property to multiply 2 by 3x-1.
x+14=6x-\frac{4}{2}+\frac{7}{2}
Convert -2 to fraction -\frac{4}{2}.
x+14=6x+\frac{-4+7}{2}
Since -\frac{4}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
x+14=6x+\frac{3}{2}
Add -4 and 7 to get 3.
x+14-6x=\frac{3}{2}
Subtract 6x from both sides.
-5x+14=\frac{3}{2}
Combine x and -6x to get -5x.
-5x=\frac{3}{2}-14
Subtract 14 from both sides.
-5x=\frac{3}{2}-\frac{28}{2}
Convert 14 to fraction \frac{28}{2}.
-5x=\frac{3-28}{2}
Since \frac{3}{2} and \frac{28}{2} have the same denominator, subtract them by subtracting their numerators.
-5x=-\frac{25}{2}
Subtract 28 from 3 to get -25.
x=\frac{-\frac{25}{2}}{-5}
Divide both sides by -5.
x=\frac{-25}{2\left(-5\right)}
Express \frac{-\frac{25}{2}}{-5} as a single fraction.
x=\frac{-25}{-10}
Multiply 2 and -5 to get -10.
x=\frac{5}{2}
Reduce the fraction \frac{-25}{-10} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}