Solve for x
x = \frac{\sqrt{457} - 15}{2} \approx 3.188779163
x=\frac{-\sqrt{457}-15}{2}\approx -18.188779163
Graph
Share
Copied to clipboard
5x-10=20x-70+2+x^{2}
Multiply 2 and 10 to get 20.
5x-10=20x-68+x^{2}
Add -70 and 2 to get -68.
5x-10-20x=-68+x^{2}
Subtract 20x from both sides.
-15x-10=-68+x^{2}
Combine 5x and -20x to get -15x.
-15x-10-\left(-68\right)=x^{2}
Subtract -68 from both sides.
-15x-10+68=x^{2}
The opposite of -68 is 68.
-15x-10+68-x^{2}=0
Subtract x^{2} from both sides.
-15x+58-x^{2}=0
Add -10 and 68 to get 58.
-x^{2}-15x+58=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-1\right)\times 58}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -15 for b, and 58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-1\right)\times 58}}{2\left(-1\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+4\times 58}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-15\right)±\sqrt{225+232}}{2\left(-1\right)}
Multiply 4 times 58.
x=\frac{-\left(-15\right)±\sqrt{457}}{2\left(-1\right)}
Add 225 to 232.
x=\frac{15±\sqrt{457}}{2\left(-1\right)}
The opposite of -15 is 15.
x=\frac{15±\sqrt{457}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{457}+15}{-2}
Now solve the equation x=\frac{15±\sqrt{457}}{-2} when ± is plus. Add 15 to \sqrt{457}.
x=\frac{-\sqrt{457}-15}{2}
Divide 15+\sqrt{457} by -2.
x=\frac{15-\sqrt{457}}{-2}
Now solve the equation x=\frac{15±\sqrt{457}}{-2} when ± is minus. Subtract \sqrt{457} from 15.
x=\frac{\sqrt{457}-15}{2}
Divide 15-\sqrt{457} by -2.
x=\frac{-\sqrt{457}-15}{2} x=\frac{\sqrt{457}-15}{2}
The equation is now solved.
5x-10=20x-70+2+x^{2}
Multiply 2 and 10 to get 20.
5x-10=20x-68+x^{2}
Add -70 and 2 to get -68.
5x-10-20x=-68+x^{2}
Subtract 20x from both sides.
-15x-10=-68+x^{2}
Combine 5x and -20x to get -15x.
-15x-10-x^{2}=-68
Subtract x^{2} from both sides.
-15x-x^{2}=-68+10
Add 10 to both sides.
-15x-x^{2}=-58
Add -68 and 10 to get -58.
-x^{2}-15x=-58
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-15x}{-1}=-\frac{58}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{15}{-1}\right)x=-\frac{58}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+15x=-\frac{58}{-1}
Divide -15 by -1.
x^{2}+15x=58
Divide -58 by -1.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=58+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=58+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{457}{4}
Add 58 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{457}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{457}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{\sqrt{457}}{2} x+\frac{15}{2}=-\frac{\sqrt{457}}{2}
Simplify.
x=\frac{\sqrt{457}-15}{2} x=\frac{-\sqrt{457}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}