Solve for x
x = \frac{30}{19} = 1\frac{11}{19} \approx 1.578947368
Graph
Share
Copied to clipboard
5x-\frac{4}{3}\times 2x-\frac{4}{3}\times 3=2\left(3-2x\right)
Use the distributive property to multiply -\frac{4}{3} by 2x+3.
5x+\frac{-4\times 2}{3}x-\frac{4}{3}\times 3=2\left(3-2x\right)
Express -\frac{4}{3}\times 2 as a single fraction.
5x+\frac{-8}{3}x-\frac{4}{3}\times 3=2\left(3-2x\right)
Multiply -4 and 2 to get -8.
5x-\frac{8}{3}x-\frac{4}{3}\times 3=2\left(3-2x\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
5x-\frac{8}{3}x-4=2\left(3-2x\right)
Cancel out 3 and 3.
\frac{7}{3}x-4=2\left(3-2x\right)
Combine 5x and -\frac{8}{3}x to get \frac{7}{3}x.
\frac{7}{3}x-4=6-4x
Use the distributive property to multiply 2 by 3-2x.
\frac{7}{3}x-4+4x=6
Add 4x to both sides.
\frac{19}{3}x-4=6
Combine \frac{7}{3}x and 4x to get \frac{19}{3}x.
\frac{19}{3}x=6+4
Add 4 to both sides.
\frac{19}{3}x=10
Add 6 and 4 to get 10.
x=10\times \frac{3}{19}
Multiply both sides by \frac{3}{19}, the reciprocal of \frac{19}{3}.
x=\frac{10\times 3}{19}
Express 10\times \frac{3}{19} as a single fraction.
x=\frac{30}{19}
Multiply 10 and 3 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}