Solve for x
x<\frac{26}{3}
Graph
Share
Copied to clipboard
5x+18-9x>3\left(x+1\right)-4\left(2+x\right)-3
Use the distributive property to multiply 9 by 2-x.
-4x+18>3\left(x+1\right)-4\left(2+x\right)-3
Combine 5x and -9x to get -4x.
-4x+18>3x+3-4\left(2+x\right)-3
Use the distributive property to multiply 3 by x+1.
-4x+18>3x+3-8-4x-3
Use the distributive property to multiply -4 by 2+x.
-4x+18>3x-5-4x-3
Subtract 8 from 3 to get -5.
-4x+18>-x-5-3
Combine 3x and -4x to get -x.
-4x+18>-x-8
Subtract 3 from -5 to get -8.
-4x+18+x>-8
Add x to both sides.
-3x+18>-8
Combine -4x and x to get -3x.
-3x>-8-18
Subtract 18 from both sides.
-3x>-26
Subtract 18 from -8 to get -26.
x<\frac{-26}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x<\frac{26}{3}
Fraction \frac{-26}{-3} can be simplified to \frac{26}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}