5x+4y=14(4x+5y=
Solve for x
x=-\frac{22y}{17}
Solve for y
y=-\frac{17x}{22}
Graph
Share
Copied to clipboard
5x+4y=56x+70y
Use the distributive property to multiply 14 by 4x+5y.
5x+4y-56x=70y
Subtract 56x from both sides.
-51x+4y=70y
Combine 5x and -56x to get -51x.
-51x=70y-4y
Subtract 4y from both sides.
-51x=66y
Combine 70y and -4y to get 66y.
\frac{-51x}{-51}=\frac{66y}{-51}
Divide both sides by -51.
x=\frac{66y}{-51}
Dividing by -51 undoes the multiplication by -51.
x=-\frac{22y}{17}
Divide 66y by -51.
5x+4y=56x+70y
Use the distributive property to multiply 14 by 4x+5y.
5x+4y-70y=56x
Subtract 70y from both sides.
5x-66y=56x
Combine 4y and -70y to get -66y.
-66y=56x-5x
Subtract 5x from both sides.
-66y=51x
Combine 56x and -5x to get 51x.
\frac{-66y}{-66}=\frac{51x}{-66}
Divide both sides by -66.
y=\frac{51x}{-66}
Dividing by -66 undoes the multiplication by -66.
y=-\frac{17x}{22}
Divide 51x by -66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}