Solve for x
x=0.22
Graph
Share
Copied to clipboard
5x+\frac{48}{40}=2.3
Expand \frac{4.8}{4} by multiplying both numerator and the denominator by 10.
5x+\frac{6}{5}=2.3
Reduce the fraction \frac{48}{40} to lowest terms by extracting and canceling out 8.
5x=2.3-\frac{6}{5}
Subtract \frac{6}{5} from both sides.
5x=\frac{23}{10}-\frac{6}{5}
Convert decimal number 2.3 to fraction \frac{23}{10}.
5x=\frac{23}{10}-\frac{12}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{23}{10} and \frac{6}{5} to fractions with denominator 10.
5x=\frac{23-12}{10}
Since \frac{23}{10} and \frac{12}{10} have the same denominator, subtract them by subtracting their numerators.
5x=\frac{11}{10}
Subtract 12 from 23 to get 11.
x=\frac{\frac{11}{10}}{5}
Divide both sides by 5.
x=\frac{11}{10\times 5}
Express \frac{\frac{11}{10}}{5} as a single fraction.
x=\frac{11}{50}
Multiply 10 and 5 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}