Solve for x
x=\frac{3\left(y-11\right)}{7}
Solve for y
y=\frac{7x}{3}+11
Graph
Share
Copied to clipboard
5x+2y+7=-2x+5y-26
To find the opposite of 2x-5y+26, find the opposite of each term.
5x+2y+7+2x=5y-26
Add 2x to both sides.
7x+2y+7=5y-26
Combine 5x and 2x to get 7x.
7x+7=5y-26-2y
Subtract 2y from both sides.
7x+7=3y-26
Combine 5y and -2y to get 3y.
7x=3y-26-7
Subtract 7 from both sides.
7x=3y-33
Subtract 7 from -26 to get -33.
\frac{7x}{7}=\frac{3y-33}{7}
Divide both sides by 7.
x=\frac{3y-33}{7}
Dividing by 7 undoes the multiplication by 7.
5x+2y+7=-2x+5y-26
To find the opposite of 2x-5y+26, find the opposite of each term.
5x+2y+7-5y=-2x-26
Subtract 5y from both sides.
5x-3y+7=-2x-26
Combine 2y and -5y to get -3y.
-3y+7=-2x-26-5x
Subtract 5x from both sides.
-3y+7=-7x-26
Combine -2x and -5x to get -7x.
-3y=-7x-26-7
Subtract 7 from both sides.
-3y=-7x-33
Subtract 7 from -26 to get -33.
\frac{-3y}{-3}=\frac{-7x-33}{-3}
Divide both sides by -3.
y=\frac{-7x-33}{-3}
Dividing by -3 undoes the multiplication by -3.
y=\frac{7x}{3}+11
Divide -7x-33 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}