Evaluate
\frac{3x^{2}}{5}+7x
Factor
\frac{x\left(3x+35\right)}{5}
Graph
Share
Copied to clipboard
7x+\frac{3x}{5}x
Combine 5x and 2x to get 7x.
7x+\frac{3xx}{5}
Express \frac{3x}{5}x as a single fraction.
\frac{5\times 7x}{5}+\frac{3xx}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7x times \frac{5}{5}.
\frac{5\times 7x+3xx}{5}
Since \frac{5\times 7x}{5} and \frac{3xx}{5} have the same denominator, add them by adding their numerators.
\frac{35x+3x^{2}}{5}
Do the multiplications in 5\times 7x+3xx.
\frac{25x+10x+3xx}{5}
Factor out \frac{1}{5}.
x\left(35+3x\right)
Consider 25x+10x+3x^{2}. Factor out x.
3x+35
Consider 25+10+3x. Multiply and combine like terms.
\frac{x\left(3x+35\right)}{5}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}