Solve for x
x<-\frac{1}{4}
Graph
Share
Copied to clipboard
\frac{16}{3}x<\frac{2}{3}+4+25-31
Combine 5x and \frac{1}{3}x to get \frac{16}{3}x.
\frac{16}{3}x<\frac{2}{3}+\frac{12}{3}+25-31
Convert 4 to fraction \frac{12}{3}.
\frac{16}{3}x<\frac{2+12}{3}+25-31
Since \frac{2}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
\frac{16}{3}x<\frac{14}{3}+25-31
Add 2 and 12 to get 14.
\frac{16}{3}x<\frac{14}{3}+\frac{75}{3}-31
Convert 25 to fraction \frac{75}{3}.
\frac{16}{3}x<\frac{14+75}{3}-31
Since \frac{14}{3} and \frac{75}{3} have the same denominator, add them by adding their numerators.
\frac{16}{3}x<\frac{89}{3}-31
Add 14 and 75 to get 89.
\frac{16}{3}x<\frac{89}{3}-\frac{93}{3}
Convert 31 to fraction \frac{93}{3}.
\frac{16}{3}x<\frac{89-93}{3}
Since \frac{89}{3} and \frac{93}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{3}x<-\frac{4}{3}
Subtract 93 from 89 to get -4.
x<-\frac{4}{3}\times \frac{3}{16}
Multiply both sides by \frac{3}{16}, the reciprocal of \frac{16}{3}. Since \frac{16}{3} is positive, the inequality direction remains the same.
x<\frac{-4\times 3}{3\times 16}
Multiply -\frac{4}{3} times \frac{3}{16} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-4}{16}
Cancel out 3 in both numerator and denominator.
x<-\frac{1}{4}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}