Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+5x=684
Use the distributive property to multiply 5x by x+1.
5x^{2}+5x-684=0
Subtract 684 from both sides.
x=\frac{-5±\sqrt{5^{2}-4\times 5\left(-684\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 5 for b, and -684 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 5\left(-684\right)}}{2\times 5}
Square 5.
x=\frac{-5±\sqrt{25-20\left(-684\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-5±\sqrt{25+13680}}{2\times 5}
Multiply -20 times -684.
x=\frac{-5±\sqrt{13705}}{2\times 5}
Add 25 to 13680.
x=\frac{-5±\sqrt{13705}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{13705}-5}{10}
Now solve the equation x=\frac{-5±\sqrt{13705}}{10} when ± is plus. Add -5 to \sqrt{13705}.
x=\frac{\sqrt{13705}}{10}-\frac{1}{2}
Divide -5+\sqrt{13705} by 10.
x=\frac{-\sqrt{13705}-5}{10}
Now solve the equation x=\frac{-5±\sqrt{13705}}{10} when ± is minus. Subtract \sqrt{13705} from -5.
x=-\frac{\sqrt{13705}}{10}-\frac{1}{2}
Divide -5-\sqrt{13705} by 10.
x=\frac{\sqrt{13705}}{10}-\frac{1}{2} x=-\frac{\sqrt{13705}}{10}-\frac{1}{2}
The equation is now solved.
5x^{2}+5x=684
Use the distributive property to multiply 5x by x+1.
\frac{5x^{2}+5x}{5}=\frac{684}{5}
Divide both sides by 5.
x^{2}+\frac{5}{5}x=\frac{684}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+x=\frac{684}{5}
Divide 5 by 5.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{684}{5}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{684}{5}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{2741}{20}
Add \frac{684}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{2741}{20}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2741}{20}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{13705}}{10} x+\frac{1}{2}=-\frac{\sqrt{13705}}{10}
Simplify.
x=\frac{\sqrt{13705}}{10}-\frac{1}{2} x=-\frac{\sqrt{13705}}{10}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.