Evaluate
\frac{5995}{4003}\approx 1.49762678
Factor
\frac{5 \cdot 11 \cdot 109}{4003} = 1\frac{1992}{4003} = 1.4976267799150638
Share
Copied to clipboard
\begin{array}{l}\phantom{4003)}\phantom{1}\\4003\overline{)5995}\\\end{array}
Use the 1^{st} digit 5 from dividend 5995
\begin{array}{l}\phantom{4003)}0\phantom{2}\\4003\overline{)5995}\\\end{array}
Since 5 is less than 4003, use the next digit 9 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{4003)}0\phantom{3}\\4003\overline{)5995}\\\end{array}
Use the 2^{nd} digit 9 from dividend 5995
\begin{array}{l}\phantom{4003)}00\phantom{4}\\4003\overline{)5995}\\\end{array}
Since 59 is less than 4003, use the next digit 9 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{4003)}00\phantom{5}\\4003\overline{)5995}\\\end{array}
Use the 3^{rd} digit 9 from dividend 5995
\begin{array}{l}\phantom{4003)}000\phantom{6}\\4003\overline{)5995}\\\end{array}
Since 599 is less than 4003, use the next digit 5 from dividend 5995 and add 0 to the quotient
\begin{array}{l}\phantom{4003)}000\phantom{7}\\4003\overline{)5995}\\\end{array}
Use the 4^{th} digit 5 from dividend 5995
\begin{array}{l}\phantom{4003)}0001\phantom{8}\\4003\overline{)5995}\\\phantom{4003)}\underline{\phantom{}4003\phantom{}}\\\phantom{4003)}1992\\\end{array}
Find closest multiple of 4003 to 5995. We see that 1 \times 4003 = 4003 is the nearest. Now subtract 4003 from 5995 to get reminder 1992. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1992
Since 1992 is less than 4003, stop the division. The reminder is 1992. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}