Evaluate
\frac{592}{15}\approx 39.466666667
Factor
\frac{2 ^ {4} \cdot 37}{3 \cdot 5} = 39\frac{7}{15} = 39.46666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)592}\\\end{array}
Use the 1^{st} digit 5 from dividend 592
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)592}\\\end{array}
Since 5 is less than 15, use the next digit 9 from dividend 592 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)592}\\\end{array}
Use the 2^{nd} digit 9 from dividend 592
\begin{array}{l}\phantom{15)}03\phantom{4}\\15\overline{)592}\\\phantom{15)}\underline{\phantom{}45\phantom{9}}\\\phantom{15)}14\\\end{array}
Find closest multiple of 15 to 59. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 59 to get reminder 14. Add 3 to quotient.
\begin{array}{l}\phantom{15)}03\phantom{5}\\15\overline{)592}\\\phantom{15)}\underline{\phantom{}45\phantom{9}}\\\phantom{15)}142\\\end{array}
Use the 3^{rd} digit 2 from dividend 592
\begin{array}{l}\phantom{15)}039\phantom{6}\\15\overline{)592}\\\phantom{15)}\underline{\phantom{}45\phantom{9}}\\\phantom{15)}142\\\phantom{15)}\underline{\phantom{}135\phantom{}}\\\phantom{15)99}7\\\end{array}
Find closest multiple of 15 to 142. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 142 to get reminder 7. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }7
Since 7 is less than 15, stop the division. The reminder is 7. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}