Evaluate
\frac{59}{6}\approx 9.833333333
Factor
\frac{59}{2 \cdot 3} = 9\frac{5}{6} = 9.833333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)590}\\\end{array}
Use the 1^{st} digit 5 from dividend 590
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)590}\\\end{array}
Since 5 is less than 60, use the next digit 9 from dividend 590 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)590}\\\end{array}
Use the 2^{nd} digit 9 from dividend 590
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)590}\\\end{array}
Since 59 is less than 60, use the next digit 0 from dividend 590 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)590}\\\end{array}
Use the 3^{rd} digit 0 from dividend 590
\begin{array}{l}\phantom{60)}009\phantom{6}\\60\overline{)590}\\\phantom{60)}\underline{\phantom{}540\phantom{}}\\\phantom{60)9}50\\\end{array}
Find closest multiple of 60 to 590. We see that 9 \times 60 = 540 is the nearest. Now subtract 540 from 590 to get reminder 50. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }50
Since 50 is less than 60, stop the division. The reminder is 50. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}