Solve for A
A=\frac{1408681C}{420B}
B\neq 0\text{ and }C\neq 0
Solve for B
B=\frac{1408681C}{420A}
A\neq 0\text{ and }C\neq 0
Share
Copied to clipboard
15C\left(59\times 28+27\right)\times \frac{55\times 15+14}{15}=A\times 420B
Multiply both sides of the equation by 420C, the least common multiple of 28,15,C.
15C\left(1652+27\right)\times \frac{55\times 15+14}{15}=A\times 420B
Multiply 59 and 28 to get 1652.
15C\times 1679\times \frac{55\times 15+14}{15}=A\times 420B
Add 1652 and 27 to get 1679.
25185C\times \frac{55\times 15+14}{15}=A\times 420B
Multiply 15 and 1679 to get 25185.
25185C\times \frac{825+14}{15}=A\times 420B
Multiply 55 and 15 to get 825.
25185C\times \frac{839}{15}=A\times 420B
Add 825 and 14 to get 839.
1408681C=A\times 420B
Multiply 25185 and \frac{839}{15} to get 1408681.
A\times 420B=1408681C
Swap sides so that all variable terms are on the left hand side.
420BA=1408681C
The equation is in standard form.
\frac{420BA}{420B}=\frac{1408681C}{420B}
Divide both sides by 420B.
A=\frac{1408681C}{420B}
Dividing by 420B undoes the multiplication by 420B.
15C\left(59\times 28+27\right)\times \frac{55\times 15+14}{15}=A\times 420B
Multiply both sides of the equation by 420C, the least common multiple of 28,15,C.
15C\left(1652+27\right)\times \frac{55\times 15+14}{15}=A\times 420B
Multiply 59 and 28 to get 1652.
15C\times 1679\times \frac{55\times 15+14}{15}=A\times 420B
Add 1652 and 27 to get 1679.
25185C\times \frac{55\times 15+14}{15}=A\times 420B
Multiply 15 and 1679 to get 25185.
25185C\times \frac{825+14}{15}=A\times 420B
Multiply 55 and 15 to get 825.
25185C\times \frac{839}{15}=A\times 420B
Add 825 and 14 to get 839.
1408681C=A\times 420B
Multiply 25185 and \frac{839}{15} to get 1408681.
A\times 420B=1408681C
Swap sides so that all variable terms are on the left hand side.
420AB=1408681C
The equation is in standard form.
\frac{420AB}{420A}=\frac{1408681C}{420A}
Divide both sides by 420A.
B=\frac{1408681C}{420A}
Dividing by 420A undoes the multiplication by 420A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}